115 resultados para Tityus bahiensis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scorpion stings account for most envenomations by venomous animals in Brazil. A retrospective study (1994-2011) of the clinical consequences of Tityus scorpion stings in 1327 patients treated at a university hospital in Campinas, southeastern Brazil, is reported. The clinical classification, based on outcome, was: dry sting (no envenoming), class I (only local manifestations), class II (systemic manifestations), class III (life-threatening manifestations, such as shock and/or cardiac failure requiring inotropic/vasopressor agents, and/or respiratory failure), and fatal. The median patient age was 27 years (interquartile interval = 15-42 years). Scorpions were brought for identification in 47.2% of cases (Tityus bahiensis 27.7%; Tityus serrulatus 19.5%). Sting severity was classified and each accounted for the following percentage of cases: dry stings - 3.4%, class I - 79.6%, class II - 15.1%, class III - 1.8% and fatal - 0.1%. Pain was the primary local manifestation (95.5%). Systemic manifestations such as vomiting, agitation, sweating, dyspnea, bradycardia, tachycardia, tachypnea, somnolence/lethargy, cutaneous paleness, hypothermia and hypotension were detected in class II or class III + fatal groups, but were significantly more frequent in the latter group. Class III and fatal cases occurred only in children <15 years old, with scorpions being identified in 13/25 cases (T. serrulatus, n = 12; T. bahiensis, n = 1). Laboratory blood abnormalities (hyperglycemia, hypokalemia, leukocytosis, elevations in serum total CK, CK-MB and troponin T, bicarbonate consumption and an increase in base deficit and blood lactate), electrocardiographic changes (ST segment) and echocardiographic alterations (ventricular ejected fraction <54%) were frequently detected in class III patients. Seventeen patients developed pulmonary edema, 16 had cardiac failure and seven had cardiogenic shock. These results indicate that most scorpion stings involved only local manifestations, mainly pain; the greatest severity was associated with stings by T. serrulatus and in children <15 years old.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great number of studies on scorpion venoms associate their effects to the autonomic nervous system, and few data are available about their action on the central nervous system (CNS). The aim of this work was to evaluate some central effects after intraperitoneal injection of Tityus serrulatus or T. bahiensis scorpion venoms. The hippocampal concentration of some neurotransmitters and their metabolites were determined. Electroencephalographic and behavioral observations were performed, and all brains were removed for histopathological analysis of hippocampal areas. Both venoms induced electrographic and behavioral alterations despite T bahiensis venom affects less the electrographic activity than T. serrulatus venom. Neurochemical analysis demonstrated no alteration in the extracellular levels of almost all the neurotransmitters evaluated, at least in the hippocampus, and no neuronal loss in this area was observed. Meanwhile, extracellular concentration of HVA increased up to 10 times in approximately 1/3 of the animals of both groups. Scorpion venoms seem to exert a small but important central effect. More studies in this field are necessary because they may be useful in developing new strategies to reduce the damage caused by scorpion stings. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From January 1984 to May 1994, 17 of 239 children under 15 years old stung by Tityus serrulatus (15.1%) or Tityus bahiensis (84.9%) presented severe envenoming. Of these 17 patients (1-11 years old; median=2 yr) 14 were stung by T.serrulatus and three by T.bahiensis. All of them received scorpion antivenom i.v. at times ranging from 45 min. to 5 h after the accident (median=2h). On admission, the main clinical manifestations and laboratory and electrocardiographic changes were: vomiting (17), diaphoresis (15), tachycardia (14), prostration (10), tachypnea (8), arterial hypertension (7), arterial hypotension (5), tremors (5), hypothermia (4), hyperglycemia (17), leukocytosis (16/16), hypokalemia (13/17), increased CK-MB enzyme activity (>6% of the total CK, 11/12), hyperamylasemia (11/14), sinusal tachycardia (16/17) and a myocardial infarction-like pattern (11/17). Six patients stung by T.serrulatus had depressed left ventricular systolic function assessed by means of echocardiography. Of these, five presented pulmonary edema and four had shock. A child aged two-years old presented severe respiratory failure and died 65 h after being stung by T.serrulatus. Severe envenomations caused by T.serrulatus were 26.2 times more frequent than those caused by T.bahiensis (p<0.001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural chromosomal race of Tityus babiensis (Scorpiones Buthidae) is described in the present paper. Five males and seven females received from St. Joaquim, State of S. Paulo, gave the following interesting results: All the spermatogonia of the five males were provided with 9 chromosomes of different sizes. All primary spermatocytes showed at metaphase one independent bivalent of normal shape and a complex group formed by 7 chromosomes which have exchanged parts. Some of the chromosomes associated in the complex group, to Judge by their behavior, were composed of fragments of three different chromosomes, being thus paired with three other members of the compound group. The manner in which all the 7 components of the group have paired with each other showed to be very constant. They gave always origin to a double-cross configuration, the longst branch of which being formed by a long chromosome paired with two components of the group and with a third chromosome that did not belong to the group. The chromosomes of the independent bivalent separate regularly, going to different poles. From the 7 elements of the compound group, 4 go to one pole and 3 to the opposite one. Consequently, secondary spermatocytes with 4 and 5 chromosomes are produced. The females, so far as it can be inferred from the study of the follicular cells of the ovariuterus, have 10 chromosomes. These females are, therefore, considered as being monogametic, that is, as producing eggs with 5 chromosomes. A sex-determining mechanism arose in this manner, the spermatozoa with 5 chromosomes giving origin to females and those with 4 to males. The fact that the sex chromosome is one of the elements taking part in the formation of the group, seems highly interesting to the author. Tetraploid cysts have been occasionally found in the testis. In one individual the chromosomes of the tetraploid primary spermatocytes behaved as expected, forming a group of 14 elements, and two independent pairs or a tetravalent group In another individual, the chromosomes of the tetraploid cells have formed two independent groups of 7, and two independent pairs, as if both chromosomal sets were by their turn entirely independent frcm one another. This fact is certainly not devoid of special interest. The males as well as the females studied in this paper differed in nothing from the typical members of the species. The unique differential character of the new race is found in the umber and behavior of its chromosomes. It is highly remarkable that the occurrences which have transformed the 6 chromosomes normally present in the species into a new set of 9 elements, 7 of which have been profoun- dly altered in their structure, do not show any influence on the morphology of the organism. This fact, together with those found in the salivary-chromosomes races of Drosophila and Sciara. compromises strongly the genetical concept of position effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitotic and meiotic chromosomes of Tityus bahiensis were investigated using light (LM) and transmission electron microscopy (TEM) to determine the chromosomal characteristics and disclose the mechanisms responsible for intraspecific variability in chromosome number and for the presence of complex chromosome association during meiosis. This species is endemic to Brazilian fauna and belongs to the family Buthidae, which is considered phylogenetically basal within the order Scorpiones. In the sample examined, four sympatric and distinct diploid numbers were observed: 2n = 5, 2n = 6, 2n = 9, and 2 = 10. The origin of this remarkable chromosome variability was attributed to chromosome fissions and/or fusions, considering that the decrease in chromosome number was concomitant with the increase in chromosome size and vice versa. The LM and TEM analyses showed the presence of chromosomes without localised centromere, the lack of chiasmata and recombination nodules in male meiosis, and two nucleolar organiser regions carrier chromosomes. Furthermore, male prophase I cells revealed multivalent chromosome associations and/or unsynapsed or distinctly associated chromosome regions (gaps, less-condensed chromatin, or loop-like structure) that were continuous with synapsed chromosome segments. All these data permitted us to suggest that the chromosomal rearrangements of T. bahiensis occurred in a heterozygous state. A combination of various factors, such as correct disjunction and balanced segregation of the chromosomes involved in complex meiotic pairing, system of achiasmate meiosis, holocentric nature of the chromosomes, population structure, and species dispersion patterns, could have contributed to the high level of chromosome rearrangements present in T. bahiensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male scorpions (Tityus bahiensis) that have been deprived of their hemispermatophores and hemispermatophore sheaths retain their ability to court females despite their inability to mate successfully. Although hemispermatophores usually regenerate rapidly in nature, no such regeneration occurred after experimental amputation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper the author describes a very interesting case of union of two homologous chromosomes of the scorpion Tityus bahiensis just by the opposite extremities. The two normal pairs of chromosomes behave as ordinarily, the members of each pair showing at times a slight disturbance in their regular parallelism. The complex chromosome, on the contrary, behaves itself as if it were devoid of kinetochores, that is, it does not orient like normal chromosomes nor reveal any kind of active movement. The fusion of the chromosomes has resulted from terminal breakage at the opposite ends, the correspondig fragments having been found unpaired in a cell in which two pairs of chromosomes were present. Consequently, the compound chromosome, like the normal ones, is provided with a kinetochore at each one of the free ends. Being thus a centric chromosome its behavior, or more exactly, its kinetic inactivity may be compared with that of the monovalents found elsewhere in meioses. It is due o the failure of a partner. The fusion of two homologous chromosomes has transformed them into a new chromosomal unit in whose corresponding parts the ability of pairing was entirely abolished. This result is in full contradiction with the theory of a point-to point attraction between homologous chromosomes attributed to particular power of the genes, since, if genes really exist, being placed in their original loci, they would promote the union side by side of the members of the compound chromosome. If an attraction loci-to-loci should prevail the compound chromosome would be bent as in Fig. 8, C or form a ring similar to the loops observed in the inverted segment of sailvary chromosomes of Drosophila, as represented in the Fig. 8, D and this, in accordance with the order of the loci resulting from an union of corresponding or opposite ends of the fused chromosomes, as indicated in the Fig, 8 A and B. The evidence in hand points to a fusion by non homologous extremities. The expected rings, however, have never been found in metaphase plates. From this fact the author concludes that there is no point-to-point attraction between chromosomes, a conclusion in full agreement with the behavior of Hemipteran chromosomes which, in spite of geing composed of two equivalent halves do not bend in order to adjust the corresponding loci. (Cf. the papers on Hemiptera published by the author in this volume).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present new data on litter size and date of birth (month) for 21 South American scorpions species. We provide data for one katoikogenic species, the liochelid Opisthacanthus cayaporum Vellard, 1932 (offspring = 3; birth month: Jan); and for several apoikogenic species, such as the bothriurids Bothriurus araguayae Vellard, 1934 (53; Sep), B. rochensis San Martín, 1965 (22-28; Jan, Aug); the buthids Ananteris balzanii Thorell, 1891 (10-34; Jan-Mar), Physoctonus debilis (Koch, 1840) (2; Sep), Rhopalurus amazonicus Lourenço, 1986 (19; Nov), R. lacrau Lourenço & Pinto-da-Rocha, 1997 (30; Dec), R. laticauda Thorell, 1876 (41; Nov), R. rochai Borelli, 1910 (11-47; Dec-Jan, Mar-Apr), Tityus bahiensis (Perty, 1833) (4-23; Oct-Mar), T. clathratus Koch, 1844 (8-18; Nov-Jan), T. costatus (Karsch, 1879) (21-25; Jan, Apr), T. kuryi Lourenço, 1997 (4-16; Mar), T. mattogrossensis Borelli, 1901(8-9; May), T. obscurus (Gervais, 1843) (16-31; Jan-Feb, May, Jul), T. serrulatus Lutz & Mello, 1922 (8-36; Dec, Feb-Apr), T. silvestris Pocock, 1897 (5-14; Dec-Jan, Apr), T. stigmurus (Thorell, 1876) (10-18; Nov, Jan, Mar), Tityus sp. 1 (T. clathratus group - 7-12; Feb-Apr), Tityus sp. 2 (T. bahiensis group - 2; Mar); and the chactid Brotheas sp. (8-21; Jan, Apr). We observed multiple broods: R. lacrau (offspring in the 2nd brood = 27), T. kuryi (6-16), T. obscurus (2-32), T. silvestris (8), T. stigmurus (4-9), T. bahiensis (offspring in the 2nd brood = 2-18; 3rd = 1), and T. costatus (2nd brood = 18; 3rd = 4). We found statistically significant positive correlation between female size and litter size for T. bahiensis and T. silvestris, and nonsignificant correlation for T. serrulatus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A more or less detailed study of the spermatogenesis in six species of Hemiptera belonging to the Coreid Family is made in the present paper. The species studied and their respective chromosome numbers were: 1) Diactor bilineatus (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationaliv in the first division and passing undivided to one pole in the second. 2) Lcptoglossus gonagra (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 3) Phthia picta (Drury) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 4) Anisocelis foliacea Fabr. : spermatogonia with 26 + X fthe highest mumber hitherto known in the Family), primary .spermatocytes with 13 + X, X dividing equationally in the first division an passing undivided to one pole in the second. 5) Pachylis pharaonis (Herbtst) : spermatogonia with 16 + X, primary spermatocytes with 8 + X. Behaviour of the heteroehromosome not referred. 6) Pachylis laticornis (Fabr.) : spermatogonia with 14 + X, primary spermatocytes with 7 + X, X passing undivided to one pole in the first division and therefore secondary spermatocytes with 7 + X and 7 chromosomes. General results and conclusions a) Pairing modus of the chromosomes (Telosynapsis or Farasynapsis ?) - In several species of the Coreld bugs the history of the chromosomes from the diffuse stage till diakinesis cannot be follewed in detail due specially to the fact that lhe bivalents, as soon as they begin to be individually distinct they appear as irregular and extremely lax chromatic areas, which through an obscure process give rise to the diakinesis and then to the metaphase chomosomes. Fortunately I was able to analyse the genesis of the cross-shaped chromosomes, becoming thus convinced that even in the less favorable cases like that of Phthia, in which the crosses develop from four small condensation areas of the diffuse chromosomes, nothing in the process permit to interpret the final results as being due to a previous telosynaptic pairing. In the case of long bivalents formed by two parallel strands intimately united at both endsegments and more or less widely open in the middle (Leptoglossus, Pachylis), I could see that the lateral arms of the crosses originate from condensation centers created by a torsion or bending in the unpaired parts of the chromosomes In the relatively short bivalents the lateral branches of the cross are formed in the middle but in the long ones, whose median opening is sometimes considerable, two asymetrical branches or even two independent crosses may develop in the same pair. These observations put away the idea of an end-to-end pairing of the chromosomes, since if it had occured the lateral arms of the crosses would always be symetrical and median and never more than two. The direct observation of a side- toside pairing of the chromosomal threads at synizesis, is in foil agreement with the complete lack of evidence in favour of telosynapsis. b) Anaphasic bridges and interzonal connections - The chromosomes as they separate from each other in anaphase they remain connected by means of two lateral strands corresponding to the unpaired segmenas observed in the bivalents at the stages preceding metaphase. In the early anaphase the chromosomes again reproduce the form they had in late diafcinesis. The connecting threads which may be thick and intensely coloured are generally curved and sometimes unequal in lenght, one being much longer than the other and forming a loop outwardly. This fact points to a continuous flow of chromosomal substance independently from both chromosomes of the pair rather than to a mechanical stretching of a sticky substance. At the end of anaphase almost all the material which formed the bridges is reduced to two small cones from whose vertices a very fine and pale fibril takes its origin. The interzonal fibres, therefore, may be considered as the remnant of the anaphasic bridges. Abnormal behaviour of the anaphase chromosomes showed to be useful in aiding the interpretation of normal aspects. It has been suggested by Schrader (1944) "that the interzonal is nothing more than a sticky coating of the chromosome which is stretched like mucilage between the daughter chromosomes as they move further and further apart". The paired chromosomes being enclosed in a commom sheath, as they separate they give origin to a tube which becomes more and more stretched. Later the walls of the tube collapse forming in this manner an interzonal element. My observations, however, do not confirm Schrader's tubular theory of interzonal connections. In the aspects seen at anaphase of the primary spermatocytes and described in this paper as chromosomal bridges nothing suggests a tubular structure. There is no doubt that the chromosomes are here connected by two independent strands in the first division of the spermatocytes and by a single one in the second. The manner in which the chromosomes separate supports the idea of transverse divion, leaving little place for another interpretation. c) Ptafanoeomc and chromatoid bodies - The colourabtlity of the plasmosome in Diactor and Anisocelis showed to be highly variable. In the latter species, one may find in the same cyst nuclei provided with two intensely coloured bodies, the larger of which being the plasmosome, sided by those in which only the heterochromosome took the colour. In the former one the plasmosome strongly coloured seen in the primary metaphase may easily be taken for a supernumerary chromosome. At anaphase this body stays motionless in the equator of the cell while the chromosomes are moving toward the poles. There, when intensely coloured ,it may be confused with the heterochromosome of the secondary spermatocytes, which frequently occupies identical position in the corresponding phase, thus causing missinterpretation. In its place the plasmosome may divide into two equal parts or pass undivided to one cell in whose cytoplasm it breaks down giving rise to a few corpuscles of unequal sizes. In Pachylis pharaonis, as soon as the nuclear membrane breate down, the plasmosome migrates to a place in the periphery of the cell (primary spermatocyte), forming there a large chromatoid body. This body is never found in the cytoplasm prior to the dissolution of the nuclear membrane. It is certain that chromatoid bodies of different origin do exist. Here, however, we are dealing, undoubtedly, with true plasmosomes. d) Movement of the heterochromosome - The heterochromosome in the metaphase of the secondary spermatocytes may occupy the most different places. At the time the autosomes prient themselves in the equatorial plane it may be found some distance apart in this plane or in any other plane and even in the subpolar and polar regions. It remains in its place during anaphase. Therefore, it may appear at the same level with the components of one of the anaphase plates (synchronism), between both plates (succession) or between one plate and tbe pole (precession), what depends upon the moment the cell was fixed. This does not mean that the heterochromosome sometimes moves as quickly as the autosomes, sometimes more rapidly and sometimes less. It implies, on the contrary, that, being anywhere in the cell, the heterochromosome m he attained and passed by the autosomes. In spite of being almost motionless the heterochromosome finishes by being enclosed in one of the resulting nuclei. Consequently, it does move rapidly toward the group formed by the autosomes a little before anaphase is ended. This may be understood assuming that the heterochromosome, which do not divide, having almost inactive kinetochore cannot orient itself, giving from wherever it stays, only a weak response to the polar influences. When in the equator it probably do not perform any movement in virtue of receiving equal solicitation from both poles. When in any other plane, despite the greater influence of the nearer pole, the influence of the opposite pole would permit only so a slow movement that the autosomes would soon reach it and then leave it behind. It is only when the cell begins to divide that the heterochromosome, passing to one of the daughter cells scapes the influence of the other and thence goes quickly to join the autosomes, being enclosed with them in the nucleus formed there. The exceptions observed by BORING (1907) together with ; the facts described here must represent the normal behavior of the heterocromosome of the Hemiptera, the greater frequency of succession being the consequence of the more frequent localization of the heterochromosome in the equatorial plane or in its near and of the anaphase rapidity. Due to its position in metaphase the heterochromosome in early anaphase may be found in precession. In late anaphase, oh the contrary ,it appears almost always in succession. This is attributed to the fact of the heterochromosome being ordinairily localized outside the spindle area it leaves the way free to the anaphasic plate moving toward the pole. Moreover, the heterochromosome being a round element approximately of the size of the autosomes, which are equally round or a little longer in the direction of the movement, it can be passed by the autosomes even when it stands in the area of the spindle, specially if it is not too far from the equatorial plane. e) The kinetochore - This question has been fully discussed in another paper (PIZA 1943a). The facts treated here point to the conclusion that the chromosomes of the Coreidae, like those of Tityus bahiensis, are provided with a kinetochore at each end, as was already admitted by the present writer with regard to the heterochromosome of Protenor. Indeed, taking ipr granted the facts presented in this paper, other cannot be the interpretation. However, the reasons by which the chromosomes of the species studied here do not orient themselves at metaphase of the first division in the same way as the heterochromosome of Protenor, that is, with the major axis parallelly to the equatorial plane, are claiming for explanation. But, admiting that the proximity of the kinetochores at the ends of chromosomes which do not separate until the second division making them respond to the poles as if they were a single kinetochore ,the explanation follows. (See PIZA 1943a). The median opening of the diplonemas when they are going to the diffuse stage as well as the reappearance of the bivalents always united at the end-segments and open in the middle is in full agreement with the existence of two terminal kinetochores. The same can be said with regard to the bivalents which join their extremities to form a ring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three species of Scorpions beloging to two different families were studied cytologically: a) Tityus mattogrossensis Borelli (Fam. Buthidae), - This species presents spermatogonia provided with 20 short chromosomes which orient at metaphase with their axis parallelly to the plane of the equator and move toward the poles without changing this position, from the stage pachytene to metaphase the bivalents become, as in Tityus bahiensis, progressivery shorter and thicker, without showing that chiasmata occured at any time. The paired chromosomes never open themselves, out to form loops as in orthodox meioses. As in Tityus bahiensis the bivalents are inserted In the spindle before reaching their maxim contraction. No diakinesis has been observed. The primary spermatocyte metaphases are provided, with 10 pairs of chromosones, two of which are larger and two smaller than the rest. The bivalents orient as in Tityus bahiensis with their length in the plane of the equator and separate parallelly. Spindle fibres are seen alongst their entire body. While, in Tityus bahiensis the ends of the chromosomes are pronouncedly turned to opposite poles at metaphase, nothing like this was observed in the present species. Only late in anaphase the chromosomes of Tityus mattogrossensis show a bending to the poles. The secondary spermatocytes present 10 short chromosomes, two being larger than, the others. Here, on the contrary, the chromosomes are strongly curved toward the poles since the beginning of anaphase. Some chromosomal anomalies have been noticed. Primary spermatocytes with 14 bivalents, some of which representing probably free fragments, were observed. Primary spermatocytes with 8 bivalents and one cross of 4 chromosomes were interpreted as resulting from breakages followed by translocations Primary spermatocytes with 9 bivalents, one of which being much longer than the longst of the normal plates, show that fusion by the extremities of two non homologous chromosomes on the onde side, and of their respective homologous in the same way on tre other, have occured. Orientation of bivalents with their body parallelly to the spindle axis and anaphasic bridges have been encountered. All in all points to the conclusion that the chromosomes of Tityus mattogrossesis, like those of Tityus bahiensia are provided with one kinetochore at each end. Ananteris balzani Thorell - (Fam. Buthidae). - This species which belongs to the same family as Tityus, is provided with 12 chromosomes (diploid). These studied in embryonic tissues, showed the same behavior as the somatic chromosomes of Tityus bahiensis. Bothrirus sp. (Bothriuridae). - Only spermatogonia were found in the testis, of the single male hitherto investigated. The chromosomes, in number of 36, are of different sizes but small and provided, as ordinarily, with a single kinetochore. They behave therefore in an orthodox manner in mitosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Material: Studies were made mainly with Ascaris megalocephála Cloq. univalens and bivalens, and also with Tityus bahiensis Perty. 1) Somatic pairing of heterochromatic regions. The heterochromatic ends of the somatic chromosomes in Ascaris show a very strong tendency for unspecifical somatic pairing which may occur between parts of different chromosomes (Figs. 1, 2, 3, 7, 10, 11, 12, 13, 14, 16, 18,), between the two ends of the same chromosome either directly (Figs. 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 18) or inversely (Fig. 8, in the arrow) and also within a same chromosomal arm (Fig. 6). 2) During the early first cleavage division the chomosomes are an isodiametric cylinder (Figs. 6, 9, 11, 13, 14). But in later metaphase the ends become club shaped (Figs. 1, 2, 3, 4, 5, 7, 10) which is interpreted as the beginning of migration of chromatic substance from the central euchromatic region towards the heterochromatic regions. This migration becomes more and accentuated in anaphase (Figs. 19, 22, 23) and in the vegetative cells where euchromatic region looses more and more staing power, especially in the intersititial zones between the individual small spherical chromosomes into which the euchromatic region desintegrates. The emigrated chromatin material is finally eliminated with the heterochromatic chromosome ends (Fig. 23 and 24). 3) It seems a general rule that during mitotic anaphase all chromosomes with diffuse or multiple spindle fiber attachement (Ascaris, Tityus, Luzula, Steatococcus, Homoptera and Heteroptera in general) move to the poles in the form of an U with precedence of the chromosomal ends. In Ascaris, the heterocromatic regions are pulled passively towards the poles and only the euchromatic central portion may be U-shaped (Fig. 19, 22, 25). While in the other species this U-shape is perfect since the beginning of anaphase, giving the impression that movement towards the poles begins at both ends of a chromosome simultaneously, this is not the case in Ascaris. There the euchromatic region is at first U-shaped, passing then to form a straight or zig-zag line and becoming again U-shaped during late anaphase. This is explained by the fact that the ends of the euchromatic regions have to pull the weight of the passive heterochromatic portions. 4) While it is generally accepted that, during first meio-tic division untill second anaphase, all attachement regions remain either undivided or at least united closely, this is not the case in chromosomes with diffused or multiple attachment. Here one clearly sees in all cases so far studied four parallel chromatids at first metaphase. In Luzula and Tityus (for Tityus all figs. 26 to 31) this division is allready quite clear in paraphase (pro-metaphase) and it cannot be said wether in other species the division in sister chromatids is allready present, but not visible at this stage. During first anaphase the sister chromatids of Titbits remain more or less in contact, while in Luzula and especially in Ascaris they are quite separated. Thus one can count in late anaphase or telophase of Ascaris megalocephala bivalens, nearly allways, four separate chromosomes near each pole, or a total of eight chromatids per division figure (Figs. 35, 36, 37, 38, 39, 40, 41).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous avons travaillé à Bello Horizonte, Etat de Minas, avec le venin de 4 espèces de Scorpions: Tityus bahiensis (C. L. KOCK, 1836). Tityus serrulatus (LUTZ-MELLO, 1922). Tityus dorsomaculatus (LUTZ – MELLO, 1922). Bothriurus (espèce em étude), sur un total de 13.640 individus. Nous avons essayé et observe l’action du venin sur 97 espèces differentes d’êtres vivants – depuis les chlamydozoaires jusqu’à l’«Homo sapiens». Nous avons cherché à déterminer une unité toxique «plus précise, plus régulierè». Les étalons dits «unité vésicule», «unité morsure» sont inconstants et sans rigueur. Tout au plus, peuvent ils server à l’étude de l’action générale du venin, et cela meme, dans certains cas seulement. Nous avons employé la pesée pour determiner l’unité toxique. Ce qui est important pour qui étudie ces sujets ce n’est pás lê nombre de vésicules, mais bien la quantité de venin humide ou desséché qu’elles contiennent. La balance, pour notre travail, est um moyen indicateur de bien plus grande précision que la «vésicule» ou la «morsure». Nous sommes parvenus à prouver qu’il existe une relation constante entre le poid brut des vésicules et la quantité de venin humide ou desséché qu’elles contiennent dans leur intérieur. Donc em pesant les vésicules, nous pesons indirectement le venin. Peu nous importe qu’il y ait 10 ou 100 vésicules. Il nous importe seulement de savoir combien elles pèsent, et de déterminer par ce fait, la quantité proportionnelle de vain pur. La technique générale est la suivante: Nous pesons um certain nombre de vésicules. Nous triturons ensuite, dans um mortier stérilisé et nous emulsionnons, par l’addition consécutive d’eau distillée, stérilisée. Nous filtrons l’émulsion sur le papier filtre employé em chimie, préalablement taré et desséché dans une atmosphere de chlorure de calcium. Après le filtrage on sèche à nouveau les papiers filtre employés d'abord à l'étuve et ensuite dans la même atmosphère de chlorure de calcium. Nous pesons plusieurs fois et on obtient la moyenne de ces pesées. On soustrait de cette dernière pesée le taux des substances non venimeuses, glandulaires, également dissoutes et calculées à 23 du poids brut et celles retenues par les papiers,-on obtient ainsi la moyenne réelle du venin pur contenu dans les vésicules utilisèés. Une simple divisiôn suffit pour fixer la moyenne de chacune. Ces données ont été vérifiées par les expériences faites avec du venin pur, largement obtenu dans notre Laboratoire. Nous avons trouvé de la sorte pour une vésicule de Tityus serrulatus: 0,gr.000,386 de T. bahiensis: 0,gr.001.261.24 de venin pur ce qui donne. 7/15,96 pour la 1ère. 1/8,36 pour la 2ème du poids sec de chaque vésicule. Le poids sec, pour une moyenne obtenue de 1.000 vésicules, fut de 0,gr.008,236 pour Tityus bahiensis. Maximum 0,gr.011. Minimum 0,gr.004.4 pour chacun. Pour Tityus serrulatus, en 1.049 vésicules le poids fut de 0,gr.006,08. Maximum 0,gr.014.03. Minimum 0,gr.003,1 pour chacun. C'est pour cette raison que l'unité-vésicule est incertaine. 2 poules A et B.; l'une, A, pesant 2 K.030 gr. reçoit dans une veinè, une émulsion en sèrum physiologique à 8,50/%, stérilisé, de 19 vésicules totales de Tityus serrulatus, et présence de légers phénomènes toxiques. L'autre, B, pesant 2 K.320 gr. meurt avec tous les phénomènes classiques de l'empoisonnement, par l'injection endoveineuse del'émulsion de 16 vésicules totales de venin de Tityus serrulatus! Les premières 19 vésicules pesaient 0,gr.58; les 16 derniéres-84 milligrammes. Les premières contenaient 0,gr.003. 634 et les secondes 0,gr.005.263 de venin pur! La moyenne obtenue de 6346 scorpions, (entre T. bahiensis et T. serrulatus) nous a fourni pour chacun: 0,gr.000,131,53 de venin pur, par piqûre. Si l'on spécifie: Pour 5.197 T. bahiensis. La moyenne pour une piqûre est 0,gr.000.106.15. Pour 1.149 T. serrulatus, la moyenne pour une piqûre est.......0,gr.000.246.30. La quantité a varié, selon les individus, de 0,gr.000.035.71, à 0,gr.000.436.01 de venin pur, pour une piqûre. D'après ce qui vient d'étre dit, on peut voir combien la quantité de venin éjaculé varie, chaque fois, chez les scorpions. L'unité-piqûre ne peut done pas ètre utiliseé pour des expériences dèlicates. Le mieux est de se servir de venin pur, et c'est ce que nous avons fait pour les expériences minutieuses. Quand on n'en possède pas, on peut établir pour chaque série des expériences à tenter-la dose minima mortelle en poids (grammes et fractions) de vésicules. D'après les bases ici consignées, et avec une trés petite erreur, on peut calculer la quantité de venin pur de cette dóse. Ce calcul est d'ailleurs dispensable. On peut s'en rapporter simplement au poids sec des vésicules totales et dire que la D. m. m. est de tant de milligr. secs. Comme le venin se conserve mal dans les vésicules, il faut, dans ce procédé, doser la D. m. m. toutes les fois que l'on veut procéder á une sériê d'expériences. Le venin desséché rappelle, d'après le temps de conservations au Laboratoire, celui de Crotatus terrificus et celui des Lachesis (quand il est vieux). Il est retenu au passage en partie, par les bougies Berkfeld et Chamberland. La conservation en état de dessication est la meilleure. Ainsi gardé, à l'abri de la lumierè, aux approches de 0,gr., pendant 8 mois, il perd à peine 1,2 à 1,4 de sa valeur primitive. L'echauffement à 100 gr. trouble une dissolution de venin dans l'eau distilleé; sans atteindre toutefois son pouvoir toxique, quand on l'injecte par la voie intra-cérébrale. Nous avons fait l'experience par 11 voies diverses. Sur des animaux sensibles, nous n'avons pas obtenu de phénomènes toxiques, apparemment, par les voies suivantes: 1) buccale; 2) gastrique; 3) rectale; 4) chambre oculaire antérieure; 5) cornéenne; 6) trachéenne; 7) meningée {sur; intra; 8) simple contact, bien que direct, avec le systemè nerveux central. La gravité des phènomènes décroît suivant l'échelle ci-dessous: 1) intra-cérébrale...