997 resultados para Tires by Ply.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to compare the performance of a tractor equipped with used and new bias-ply tires (63.4% and 41.2%, front and rear tire waste, respectively), in three surface conditions: tillage soil, vegetal covered soil and firm soil. Field data were collected to calculate: forward speed, front and rear slippage tires, drawbar pull, available power at drawbar bar and fuel consumption. Results showed that both, tires and soil conditions, changed tractor capacity on developing drawbar traction. The worst performance was observed on tillage soil. The best performance of the tractor was observed at firm soil track. On the track with tilled soil, results showed that the forward speed was the lowest among the three soil conditions due to the front and rear slippage tires which was higher than vegetal covered and firm soil tracks. Fuel consumption results showed higher values on tilled tracks when compared with firm and vegetal covered tracks. The fuel consumption levels evaluated on bias-ply tires lead to significant changes on tractor’s performance at tilled soil, indicating that, at this condition, it’s necessary to replace the used tires by new tires. For vegetal covered soil operations, and also on firm soil conditions, used tires, at studied levels, indicated that these tires might still be used without tractor performance changing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transportation Department, Office of Noise Abatement, Washington, D.C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite structures exhibit many different failure mechanisms, but attempts to model composite failure frequently make a priori assumptions about the mechanism by which failure will occur. Wang et al. [1] conducted compressive tests on four configurations of composite specimen manufactured with out-of-plane waviness created by ply-drop defects. There were significantly different failures for each case. Detailed finite element models of these experiments were developed which include competing failure mechanisms. The model predictions correlate well with experimental results-both qualitatively (location of failure and shape of failed specimen) and quantitatively (failure load). The models are used to identify the progression of failure during the compressive tests, determine the critical failure mechanism for each configuration, and investigate the effect of cohesive parameters upon specimen strength. This modelling approach which includes multiple competing failure mechanisms can be applied to predict failure in situations where the failure mechanism is not known in advance. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O trabalho comparou o desempenho de um trator agrícola 4x2 TDA de 89 kW (121cv) em função do tipo de pneus (radial, diagonal e de baixa pressão), a condição de lastragem (com e sem água nos pneus) e quatro velocidades [V1 (1,84km h-1), V2 (3,18km h-1, V3 (4,57km h-1), V4 (5,04km h-1)]. O experimento foi realizado na UNESP-Jaboticabal-SP, em condição de preparo do solo com escarificador de sete hastes a 30cm de profundidade. Os pneus foram do tipo R1, com as seguintes características: [radial (dianteiros-14.9 R 26; traseiros-620/75 R 30) diagonal (dianteiros-14.9-26, traseiros-23.1-30) e BPAF (dianteiros-500/60-26.5; traseiros-700/55-34)]. O delineamento experimental foi blocos casualizados, em esquema fatorial 3x2x4, com 24 tratamentos e três repetições. Os resultados evidenciaram vantagens para o trator equipado com pneus radiais.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article aims to obtain damage-tolerant designs with minimum weight for a laminated composite structure using genetic algorithm. Damage tolerance due to impacts in a laminated composite structure is enhanced by dispersing the plies such that too many adjacent plies do not have the same angle. Weight of the structure is minimized and the Tsai-Wu failure criterion is considered for the safe design. Design variables considered are the number of plies and ply orientation. The influence of dispersed ply angles on the weight of the structure for a given loading conditions is studied by varying the angles in the range of 0 degrees-45 degrees, 0 degrees-60 degrees and 0 degrees-90 degrees at intervals of 5 degrees and by using specific ply angles tailored to loading conditions. A comparison study is carried out between the conventional stacking sequence and the stacking sequence with dispersed ply angles for damage-tolerant weight minimization and some useful designs are obtained. Unconventional stacking sequence is more damage tolerant than the conventional stacking sequence is demonstrated by performing a finite element analysis under both tensile as well as compressive loading conditions. Moreover, a new mathematical function called the dispersion function is proposed to measure the dispersion of ply angles in a laminate. The approach for dispersing ply angles to achieve damage tolerance is especially suited for composite material design space which has multiple local minima.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extensive field testes were conducted using the UCD single wheel tester employing three large radial ply tractor tires in two different soils, four different soil conditions, two axle load levels, and three levels of tire inflation pressures in order to quantify the benefits of using low/correct inflation pressures. During these tests slip, net traction, gross traction, and dynamic axle load were recorded. Furthermore, soil moisture content, cone index, and dry bulk density data were obtained at test locations. The results of the analysis showed a significant increase in net traction and traction efficiency when low/correct inflation was used. Benefits of using low/correct pressure was higher in tilled soil conditions.