948 resultados para Tire Noise.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation Department, Office of Noise Abatement, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Heavy Duty Vehicle Research, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transportation Department, Office of Noise Abatement, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Baton Rouge, La.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transportation Department, Office of Noise Abatement, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Baton Rouge, La.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A design can be defined as context-sensitive when it achieves effective technical and functional transportation solutions, while preserving and enhancing natural environments and minimizing impacts on local communities. Traffic noise is one of the most critical environmental impacts of transportation infrastructure and it affects both humans and ecosystems. Tire/pavement noise is caused by a set of interactions at the contact patch and it is the predominant source of road noise at the regular traffic speeds. Wearing course characteristics affect tire/pavement noise through various mechanisms. Furthermore, acoustic performance of road pavements varies over time and it is influenced by both aging and temperature. Three experimentations have been carried out to evaluate wearing course characteristics effects on tire/pavement noise. The first study involves the evaluation of skid resistance, surface texture and tire/pavement noise of an innovative application of multipurpose cold-laid microsurfacing. The second one involves the evaluation of the surface and acoustic characteristics of the different pavement sections of the test track of the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo. In the third study, a set of highway sections have been selected in Southern Ontario with various types of pavements. Noise measurements were carried out by means of the Statistical Pass-by (SPB) method in the first case study, whereas in the second and in the third one, Close-proximity (CPX) and the On-Board Sound Intensity (OBSI) methods have been performed in parallel. Test results have contributed to understand the effects of pavement materials, temperature and aging on tire/pavement noise. Negligible correlation was found between surface texture and roughness with noise. As a general trend, aged and stiffer materials have shown to provide higher noise levels than newer and less stiff ones. Noise levels were also observed to be higher with temperature increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reciprocal-configuration Boundary Element Method calculation of acoustic radiation characteristics has been implemented for a generic tire geometry. The influence of the geometric parameters on the radiation characteristics has been studied. The degree of amplification of noise sources on the tire belt is strongly affected by the overall tire width. In contrast, the tire radius predominantly influences the pattern of the varying amplification around the belt, rather than its absolute level. Radiusing the tire's 'shoulder' region is potentially beneficial in terms of lowering amplification levels, for a tire of fixed overall width. However, it is less effective than maintaining sharp shoulders and reducing the overall width. Thus, for an acoustically optimal belted tire, the overall width should be as small as possible, even if this leads to a larger diameter. The width should not be increased in order to accommodate a radiused crown region. Copyright © (2012) by the Institute of Noise Control Engineering (INCE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation Department, Office of Noise Abatement, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation Department, Office of Noise Abatement, Washington, D.C.