11 resultados para TinyOS
Resumo:
La Sociedad de Ciencias Aranzadi requiere de un equipo muy costoso para realizar uno de sus estudios sobre la gaviota patiamarilla del Cantábrico, y ha propuesto a la facultad de informática de Donostia-San Sebastián la creación de un dispositivo para el mismo fin, por un precio menor. Los dispositivos elegidos para la realización del seguimiento son las motas IRIS a las que se incorpora un GPS para poder registrar la localización de las aves. El objetivo de este proyecto consiste en implementar en NesC parte del código de una aplicación de seguimiento de aves. Además, se requiere diseñar un sistema de actualización del software que ejecutan las motas de forma inalámbrica mediante el sistema de radio. Este documento analiza la implementación del software para el seguimiento de las gaviotas patiamarillas, asi como el análisis previo del sistema operativo utilizado, TinyOS y las funcionalidades que éste nos ofrece.
Resumo:
The IEEE 802.15.4/ZigBee protocols are gaining increasing interests in both research and industrial communities as candidate technologies for Wireless Sensor Network (WSN) applications. In this paper, we present an open-source implementation of the IEEE 802.15.4/Zigbee protocol stack under the TinyOS operating system for the MICAz motes. This work has been driven by the need for an open-source implementation of the IEEE 802.15.4/ZigBee protocols, filling a gap between some newly released complex C implementations and black-box implementations from different manufacturers. In addition, we share our experience on the challenging problem that we have faced during the implementation of the protocol stack on the MICAz motes. We strongly believe that this open-source implementation will potentiate research works on the IEEE 802.15.4/Zigbee protocols allowing their demonstration and validation through experimentation.
Resumo:
This paper describes the basic tools to work with wireless sensors. TinyOShas a componentbased architecture which enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks. TinyOS's component library includes network protocols, distributed services, sensor drivers, and data acquisition tools ? all of which can be used asia or be further refined for a custom application. TinyOS was originally developed as a research project at the University of California Berkeley, but has since grown to have an international community of developers and users. Some algorithms concerning packet routing are shown. Incar entertainment systems can be based on wireless sensors in order to obtain information from Internet, but routing protocols must be implemented in order to avoid bottleneck problems. Ant Colony algorithms are really useful in such cases, therefore they can be embedded into the sensors to perform such routing task.
Resumo:
This paper introduces an energy-efficient Rate Adaptive MAC (RA-MAC) protocol for long-lived Wireless Sensor Networks (WSN). Previous research shows that the dynamic and lossy nature of wireless communication is one of the major challenges to reliable data delivery in a WSN. RA-MAC achieves high link reliability in such situations by dynamically trading off radio bit rate for signal processing gain. This extra gain reduces the packet loss rate which results in lower energy expenditure by reducing the number of retransmissions. RA-MAC selects the optimal data rate based on channel conditions with the aim of minimizing energy consumption. We have implemented RA-MAC in TinyOS on an off-the-shelf sensor platform (TinyNode), and evaluated its performance by comparing RA-MAC with state-ofthe- art WSN MAC protocol (SCP-MAC) by experiments.
Resumo:
In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and �sheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.
Resumo:
We develop several hardware and software simulation blocks for the TinyOS-2 (TOSSIM-T2) simulator. The choice of simulated hardware platform is the popular MICA2 mote. While the hardware simulation elements comprise of radio and external flash memory, the software blocks include an environment noise model, packet delivery model and an energy estimator block for the complete system. The hardware radio block uses the software environment noise model to sample the noise floor. The packet delivery model is built by establishing the SNR-PRR curve for the MICA2 system. The energy estimator block models energy consumption by Micro Controller Unit(MCU), Radio, LEDs, and external flash memory. Using the manufacturerpsilas data sheets we provide an estimate of the energy consumed by the hardware during transmission, reception and also track several of the MCUs states with the associated energy consumption. To study the effectiveness of this work, we take a case study of a paper presented in [1]. We obtain three sets of results for energy consumption through mathematical analysis, simulation using the blocks built into PowerTossim-T2 and finally laboratory measurements. Since there is a significant match between these result sets, we propose our blocks for T2 community to effectively test their application energy requirements and node life times.
Resumo:
We develop several hardware and software simulation blocks for the TinyOS-2 (TOSSIM-T2) simulator. The choice of simulated hardware platform is the popular MICA2 mote. While the hardware simulation elements comprise of radio and external flash memory, the software blocks include an environment noise model, packet delivery model and an energy estimator block for the complete system. The hardware radio block uses the software environment noise model to sample the noise floor.The packet delivery model is built by establishing the SNR-PRR curve for the MICA2 system. The energy estimator block models energy consumption by Micro Controller Unit(MCU), Radio,LEDs, and external flash memory. Using the manufacturer’s data sheets we provide an estimate of the energy consumed by the hardware during transmission, reception and also track several of the MCUs states with the associated energy consumption. To study the effectiveness of this work, we take a case study of a paper presented in [1]. We obtain three sets of results for energy consumption through mathematical analysis, simulation using the blocks built into PowerTossim-T2 and finally laboratory measurements. Since there is a significant match between these result sets, we propose our blocks for T2 community to effectively test their application energy requirements and node life times.
Resumo:
Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue for sensor networks since most sensors are equipped with non-rechargeable batteries that have limitedlifetime. Routing schemes are used to transfer data collectedby sensor nodes to base stations. In the literature many routing protocols for wireless sensor networks are suggested. In this work, four routing protocols for wireless sensor networks viz Flooding, Gossiping, GBR and LEACH have been simulated using TinyOS and their power consumption is studied using PowerTOSSIM. A realization of these protocols has beencarried out using Mica2 Motes.
Resumo:
Energy is of primary concern in wireless sensor networks (WSNs). Low power transmission makes the wireless links unreliable, which leads to frequent topology changes. Resulting packet retransmissions aggravate the energy consumption. Beaconless routing approaches, such as opportunistic routing (OR) choose packet forwarders after data transmissions, and are promising to support dynamic features of WSNs. This paper proposes SCAD - Sensor Context-aware Adaptive Duty-cycled beaconless OR for WSNs. SCAD is a cross-layer routing solution and it brings the concept of beaconless OR into WSNs. SCAD selects packet forwarders based on multiple types of network contexts. To achieve a balance between performance and energy efficiency, SCAD adapts duty-cycles of sensors based on real-time traffic loads and energy drain rates. We implemented SCAD in TinyOS running on top of Tmote Sky sensor motes. Real-world evaluations show that SCAD outperforms other protocols in terms of both throughput and network lifetime.