989 resultados para Timing analysis
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a Multiple Logical Ring (MLR) approach, thus with multiple independent tokens, where the communication between different domains was supported by the Inter-Domain Protocol (IDP). The proposed architecture also supports mobility of stations between different wireless cells. To that hybrid wired/wireless networking architecture we have proposed a worst-case response timing analysis of the IDP, without considering inter-cell mobility (or handoff) of stations. In this paper, we advance that previous work by proposing a worst-case timing analysis of the mobility procedure.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a multiple logical ring (MLR) approach, thus with multiple independent tokens, to which a specific bridging protocol extension, the inter-domain protocol (IDP), was proposed. The IDP offers compatibility with standard PROFIBUS, and includes mechanisms to support inter-cell mobility of wireless nodes. We advance that work by proposing a worst-case response timing analysis of the IDP.
Resumo:
27th Euromicro Conference on Real-Time Systems (ECRTS 2015), Lund, Sweden.
Resumo:
Presented at 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France.
Resumo:
The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.
Resumo:
Timinganalysis of assembler code is essential to achieve the strongest possible guarantee of correctness for safety-critical, real-time software. Previous work has shown how timingconstrain ts on controlflow paths through high-level language programs can be formalised using the semantics of the statements comprisingthe path. We extend these results to assembler-level code where it becomes possible to not only determine timingconstrain ts, but also to verify them against the known execution times for each instruction. A minimal formal model is developed with both a weakest liberal precondition and a strongest postcondition semantics. However, despite the formalism’s simplicity, it is shown that complex timingb ehaviour associated with instruction pipeliningand iterative code can be modelled accurately.
Resumo:
A program can be decomposed into a set of possible execution paths. These can be described in terms of primitives such as assignments, assumptions and coercions, and composition operators such as sequential composition and nondeterministic choice as well as finitely or infinitely iterated sequential composition. Some of these paths cannot possibly be followed (they are dead or infeasible), and they may or may not terminate. Decomposing programs into paths provides a foundation for analyzing properties of programs. Our motivation is timing constraint analysis of real-time programs, but the same techniques can be applied in other areas such as program testing. In general the set of execution paths for a program is infinite. For timing analysis we would like to decompose a program into a finite set of subpaths that covers all possible execution paths, in the sense that we only have to analyze the subpaths in order to determine suitable timing constraints that cover all execution paths.
Resumo:
A number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor distributed real-time applications. Full-duplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional Fieldbus networks? Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. In the past few years, it is particularly significant the considerable amount of work that has been devoted to the timing analysis of Ethernet-based technologies. It happens, however, that the majority of those works are restricted to the analysis of sub-sets of the overall computing and communication system, thus without addressing timeliness at a holistic level. To this end, we are addressing a few inter-linked research topics with the purpose of setting a framework for the development of tools suitable to extract temporal properties of Commercial-Off-The-Shelf (COTS) Ethernet-based factory-floor distributed systems. This framework is being applied to a specific COTS technology, Ethernet/IP. In this paper, we reason about the modelling and simulation of Ethernet/IP-based systems, and on the use of statistical analysis techniques to provide usable results. Discrete event simulation models of a distributed system can be a powerful tool for the timeliness evaluation of the overall system, but particular care must be taken with the results provided by traditional statistical analysis techniques.
Resumo:
Fieldbus networks aim at the interconnection of field devices such as sensors, actuators and small controllers. Therefore, they are an effective technology upon which Distributed Computer Controlled Systems (DCCS) can be built. DCCS impose strict timeliness requirements to the communication network. In essence, by timeliness requirements we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said to occur. P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit, which means that in the worst-case the communication response time could be derived considering that the token is fully utilised by all stations. However, such analysis can be proved to be quite pessimistic. In this paper we propose a more sophisticated P-NET timing analysis model, which considers the actual token utilisation by different masters. The major contribution of this model is to provide a less pessimistic, and thus more accurate, analysis for the evaluation of the worst-case communication response time in P-NET fieldbus networks.
Resumo:
WiDom is a wireless prioritized medium access control protocol which offers very large number of priority levels. Hence, it brings the potential to employ non-preemptive static-priority scheduling and schedulability analysis for a wireless channel assuming that the overhead of WiDom is modeled properly. Recent research has created a new version of WiDom (we call it: Slotted WiDom) which offers lower overhead compared to the previous version. In this paper we propose a new schedulability analysis for slotted WiDom and extend it to work for message streams with release jitter. Furthermore, to provide an accurate timing analysis, we must include the effect of transmission faults on message latencies. Thus, in the proposed analysis we consider the existence of different noise sources and develop the analysis for the case where messages are transmitted under noisy wireless channels. Evaluation of the proposed analysis is done by testing the slotted WiDom in two different modes on a real test-bed. The results from the experiments provide a firm validation on our findings.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
International Conference on Emerging Technologies and Factory Automation (ETFA 2015), Industrial Communication Technologies and Systems, Luxembourg, Luxembourg.
Resumo:
11th IEEE World Conference on Factory Communication Systems (WFCS 2015). 27 to 29, May, 2015, TII-SS-2: Scheduling and Performance Analysis. Palma de Mallorca, Spain.
Resumo:
Este trabalho tem como objetivo estudar e avaliar técnicas para a aceleração de algoritmos de análise de timing funcional (FTA - Functional Timing Analysis) baseados em geração automática de testes (ATPG – Automatic Test Generation). Para tanto, são abordados três algoritmos conhecidos : algoritmo-D, o PODEM e o FAN. Após a análise dos algoritmos e o estudo de algumas técnicas de aceleração, é proposto o algoritmo DETA (Delay Enumeration-Based Timing Analysis) que determina o atraso crítico de circuitos que contêm portas complexas. O DETA está definido como um algoritmo baseado em ATPG com sensibilização concorrente de caminhos. Na implementação do algoritmo, foi possível validar o modelo de computação de atrasos para circuitos que contêm portas complexas utilizando a abordagem de macro-expansão implícita. Além disso, alguns resultados parciais demonstram que, para alguns circuitos, o DETA apresenta uma pequena dependência do número de entradas quando comparado com a dependência no procedimento de simulação. Desta forma, é possível evitar uma pesquisa extensa antes de se encontrar o teste e assim, obter sucesso na aplicação de métodos para aceleração do algoritmo.
Resumo:
We present a long-term phase-coherent timing analysis and pulse-phase resolved spectroscopy for the two outbursts observed from the transient anomalous X-ray pulsar CXOU J164710.2−455216. For the first outburst we used 11 Chandra and XMM–Newton observations between 2006 September and 2009 August, the longest baseline yet for this source. We obtain a coherent timing solution with P = 10.61065583(4) s, Ṗ = 9.72(1) × 10−13 s s−1 and P̈ = –1.05(5) × 10−20 s s−2. Under the standard assumptions this implies a surface dipolar magnetic field of ∼1014 G, confirming this source as a standard B magnetar. We also study the evolution of the pulse profile (shape, intensity and pulsed fraction) as a function of time and energy. Using the phase-coherent timing solution we perform a phase-resolved spectroscopy analysis, following the spectral evolution of pulse-phase features, which hints at the physical processes taking place on the star. The results are discussed from the perspective of magnetothermal evolution models and the untwisting magnetosphere model. Finally, we present similar analysis for the second, less intense, 2011 outburst. For the timing analysis we used Swift data together with 2 XMM–Newton and Chandra pointings. The results inferred for both outbursts are compared and briefly discussed in a more general framework.