954 resultados para Time-series analysis - mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series regression models were used to examine the influence of environmental factors (soil water content and soil temperature) on the emissions of nitrous oxide (N2O) from subtropical soils, by taking into account temporal lagged environmental factors, autoregressive processes, and seasonality for three horticultural crops in a subtropical region of Australia. Fluxes of N2O, soil water content, and soil temperature were determined simultaneously on a weekly basis over a 12-month period in South East Queensland. Annual N2O emissions for soils under mango, pineapple, and custard apple were 1590, 1156, and 2038 g N2O-N/ha, respectively, with most emissions attributed to nitrification. The N2O-N emitted from the pineapple and custard apple crops was equivalent to 0.26 and 2.22%, respectively, of the applied mineral N. The change in soil water content was the key variable for describing N2O emissions at the weekly time-scale, with soil temperature at a lag of 1 month having a significant influence on average N2O emissions (averaged) at the monthly time-scale across the three crops. After accounting for soil temperature and soil water content, both the weekly and monthly time series regression models exhibited significant autocorrelation at lags of 1–2 weeks and 1–2 months, and significant seasonality for weekly N2O emissions for mango crop and for monthly N2O emissions for mango and custard apple crops in this location over this time-frame. Time series regression models can explain a higher percentage of the temporal variation of N2O emission compared with simple regression models using soil temperature and soil water content as drivers. Taking into account seasonal variability and temporal persistence in N2O emissions associated with soil water content and soil temperature may lead to a reduction in the uncertainty surrounding estimates of N2O emissions based on limited sampling effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compositional time series is obtained when a compositional data vector is observed at different points in time. Inherently, then, a compositional time series is a multivariate time series with important constraints on the variables observed at any instance in time. Although this type of data frequently occurs in situations of real practical interest, a trawl through the statistical literature reveals that research in the field is very much in its infancy and that many theoretical and empirical issues still remain to be addressed. Any appropriate statistical methodology for the analysis of compositional time series must take into account the constraints which are not allowed for by the usual statistical techniques available for analysing multivariate time series. One general approach to analyzing compositional time series consists in the application of an initial transform to break the positive and unit sum constraints, followed by the analysis of the transformed time series using multivariate ARIMA models. In this paper we discuss the use of the additive log-ratio, centred log-ratio and isometric log-ratio transforms. We also present results from an empirical study designed to explore how the selection of the initial transform affects subsequent multivariate ARIMA modelling as well as the quality of the forecasts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use time series analysis to evaluate predictive scenarios using search engine transactional logs. Our goal is to develop models for the analysis of searchers’ behaviors over time and investigate if time series analysis is a valid method for predicting relationships between searcher actions. Time series analysis is a method often used to understand the underlying characteristics of temporal data in order to make forecasts. In this study, we used a Web search engine transactional log and time series analysis to investigate users’ actions. We conducted our analysis in two phases. In the initial phase, we employed a basic analysis and found that 10% of searchers clicked on sponsored links. However, from 22:00 to 24:00, searchers almost exclusively clicked on the organic links, with almost no clicks on sponsored links. In the second and more extensive phase, we used a one-step prediction time series analysis method along with a transfer function method. The period rarely affects navigational and transactional queries, while rates for transactional queries vary during different periods. Our results show that the average length of a searcher session is approximately 2.9 interactions and that this average is consistent across time periods. Most importantly, our findings shows that searchers who submit the shortest queries (i.e., in number of terms) click on highest ranked results. We discuss implications, including predictive value, and future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods: Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results: At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion: Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the growing importance of the Chinese tourist market to Australia, an understanding of Chinese tourists' arrival patterns is essential to accurate forecasting of future arrivals. Drawing on 25 years of records (1991-2015), this study developed a time-series model of monthly arrivals of Chinese tourists in Australia. The model reflects the exponentially increasing trend and strong seasonality of arrivals. Excellent results from validation of the model's forecasts endorsed this time-series model's potential in the policy prescription and management practice of Australian tourism industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series, from a narrow point of view, is a sequence of observations on a stochastic process made at discrete and equally spaced time intervals. Its future behavior can be predicted by identifying, fitting, and confirming a mathematical model. In this paper, time series analysis is applied to problems concerning runwayinduced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. Using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear multivariate statistical techniques on fast computers offer the potential to capture more of the dynamics of the high dimensional, noisy systems underlying financial markets than traditional models, while making fewer restrictive assumptions. This thesis presents a collection of practical techniques to address important estimation and confidence issues for Radial Basis Function networks arising from such a data driven approach, including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data mining'' problem. Novel applications in the finance area are described, including customized, adaptive option pricing and stock price prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective
To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI.

Methods
The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI.

Findings
After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013–0.052). Only the intake of soft drinks – not animal fat or total calories – mediated the observed association (β: 0.030; 95% CI: 0.010–0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16–0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001–0.045).

Conclusion
Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expectations of future market conditions are generally acknowledged to be crucial for the development decision and hence for shaping the built environment. This empirical study of the Central London office market from 1987 to 2009 tests for evidence of adaptive and naive expectations. Applying VAR models and a recursive OLS regression with one-step forecasts, we find evidence of adaptive and naïve, rather than rational expectations of developers. Although the magnitude of the errors and the length of time lags vary over time and development cycles, the results confirm that developers’ decisions are explained to a large extent by contemporaneous and past conditions in both London submarkets. The corollary of this finding is that developers may be able to generate excess profits by exploiting market inefficiencies but this may be hindered in practice by the long periods necessary for planning and construction of the asset. More generally, the results of this study suggest that real estate cycles are largely generated endogenously rather than being the result of unexpected exogenous shocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of 15 coupled chemistry climate models, for the period 1960–2100, are presented. The models include a detailed stratosphere, as well as including a realistic representation of the tropospheric climate. The simulations assume a consistent set of changing greenhouse gas concentrations, as well as temporally varying chlorofluorocarbon concentrations in accordance with observations for the past and expectations for the future. The ozone results are analyzed using a nonparametric additive statistical model. Comparisons are made with observations for the recent past, and the recovery of ozone, indicated by a return to 1960 and 1980 values, is investigated as a function of latitude. Although chlorine amounts are simulated to return to 1980 values by about 2050, with only weak latitudinal variations, column ozone amounts recover at different rates due to the influence of greenhouse gas changes. In the tropics, simulated peak ozone amounts occur by about 2050 and thereafter total ozone column declines. Consequently, simulated ozone does not recover to values which existed prior to the early 1980s. The results also show a distinct hemispheric asymmetry, with recovery to 1980 values in the Northern Hemisphere extratropics ahead of the chlorine return by about 20 years. In the Southern Hemisphere midlatitudes, ozone is simulated to return to 1980 levels only 10 years ahead of chlorine. In the Antarctic, annually averaged ozone recovers at about the same rate as chlorine in high latitudes and hence does not return to 1960s values until the last decade of the simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the impact of tobacco control policies and mass media campaigns on smoking prevalence in Australian adults.
Methods: Data for calculating the average monthly prevalence of smoking between January 2001 and June 2011 were obtained via structured interviews of randomly sampled adults aged 18 years or older from Australia’s five largest capital cities (monthly mean number of adults interviewed: 2375). The influence on smoking prevalence was estimated for increased tobacco taxes; strengthened smoke-free laws; increased monthly population exposure to televised tobacco control mass media campaigns and pharmaceutical company advertising for nicotine replacement therapy (NRT), using gross ratings points; monthly sales of NRT, bupropion and varenicline; and introduction of graphic health warnings on cigarette packs. Autoregressive integrated moving average (ARIMA) models were used to examine the influence of these interventions on smoking prevalence.
Findings: The mean smoking prevalence for the study period was 19.9% (standard deviation: 2.0%), with a drop from 23.6% (in January 2001) to 17.3% (in June 2011). The best-fitting model showed that stronger smoke-free laws, tobacco price increases and greater exposure to mass media campaigns independently explained 76% of the decrease in smoking prevalence from February 2002 to June 2011.
Conclusion: Increased tobacco taxation, more comprehensive smoke-free laws and increased investment in mass media campaigns played a substantial role in reducing smoking prevalence among Australian adults between 2001 and 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.