995 resultados para Time-averaging
Resumo:
This paper examines distortion product otoacoustic emissions (DPOAEs) used to test peripheral auditory function, and how noise level in the ear affects the detectability of DPOAEs. The study examines the clinical feasibility of different time averages at different frequencies on the noise floor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quantitative estimates of time-averaging in marine shell accumulations available to date are limited primarily to aragonitic mollusk shells. We assessed time-averaging in Holocene assemblages of calcitic brachiopod shells by direct dating of individual specimens of the terebratulid brachiopod Bouchardia rosea. The data were collected from exceptional (brachiopod-rich) shell assemblages, occurring surficially on a tropical mixed carbonate-siliciclastic shelf (the Southeast Brazilian Bight, SW Atlantic), a setting that provides a good climatic and environmental analog for many Paleozoic brachiopod shell beds of North America and Europe. A total of 82 individual brachiopod shells, collected from four shallow (5-25 m) nearshore (<2.5 km from the shore) localities, were dated by using amino acid racemization (D-alloisoleucine/L-isoleucine value) calibrated with five AMS-radiocarbon dates (r(2) = 0.933). This is the first study to demonstrate that amino acid racemization methods can provide accurate and precise ages for individual shells of calcitic brachiopods.The dated shells vary in age from modern to 3000 years, with a standard deviation of 690 years. The age distribution is strongly right-skewed: the young shells dominate the dated specimens and older shells are increasingly less common. However, the four localities display significant differences in the range of time-averaging and the form of the age distribution. The dated shells vary notably in the quality of preservation, but there is no significant correlation between taphonomic condition and age, either for individual shells or at assemblage level.These results demonstrate that fossil brachiopods may show considerable time-averaging, but the scale and nature of that mixing may vary greatly among sites. Moreover, taphonomic condition is not a reliable indicator of pre-burial history of individual brachiopod shells or the scale of temporal mixing within the entire assemblage. The results obtained for brachiopods are strikingly similar to results previously documented for mollusks and suggest that differences in mineralogy and shell microstructure are unlikely to be the primary factors controlling the nature and scale of time-averaging. Environmental factors and local fluctuations in populations of shell-producing organisms are more likely to be the principal determinants of time-averaging in marine benthic shelly assemblages. The long-term survival of brachiopod shells is incongruent with the rapid shell destruction observed in taphonomic experiments. The results support the taphonomic model that shells remain protected below (but perhaps near) the surface through their early taphonomic history. They may be brought back up to the surface intermittently by bioturbation and physical reworking, but only for short periods of time. This model explains the striking similarities in time-averaging among different types of organisms and the lack of correlation between time-since-death and shell taphonomy.
Resumo:
Many numerical models for weather prediction and climate studies are run at resolutions that are too coarse to resolve convection explicitly, but too fine to justify the local equilibrium assumed by conventional convective parameterizations. The Plant-Craig (PC) stochastic convective parameterization scheme, developed in this paper, solves this problem by removing the assumption that a given grid-scale situation must always produce the same sub-grid-scale convective response. Instead, for each timestep and gridpoint, one of the many possible convective responses consistent with the large-scale situation is randomly selected. The scheme requires as input the large-scale state as opposed to the instantaneous grid-scale state, but must nonetheless be able to account for genuine variations in the largescale situation. Here we investigate the behaviour of the PC scheme in three-dimensional simulations of radiative-convective equilibrium, demonstrating in particular that the necessary space-time averaging required to produce a good representation of the input large-scale state is not in conflict with the requirement to capture large-scale variations. The resulting equilibrium profiles agree well with those obtained from established deterministic schemes, and with corresponding cloud-resolving model simulations. Unlike the conventional schemes the statistics for mass flux and rainfall variability from the PC scheme also agree well with relevant theory and vary appropriately with spatial scale. The scheme is further shown to adapt automatically to changes in grid length and in forcing strength.
Resumo:
Literature presents a huge number of different simulations of gas-solid flows in risers applying two-fluid modeling. In spite of that, the related quantitative accuracy issue remains mostly untouched. This state of affairs seems to be mainly a consequence of modeling shortcomings, notably regarding the lack of realistic closures. In this article predictions from a two-fluid model are compared to other published two-fluid model predictions applying the same Closures, and to experimental data. A particular matter of concern is whether the predictions are generated or not inside the statistical steady state regime that characterizes the riser flows. The present simulation was performed inside the statistical steady state regime. Time-averaged results are presented for different time-averaging intervals of 5, 10, 15 and 20 s inside the statistical steady state regime. The independence of the averaged results regarding the time-averaging interval is addressed and the results averaged over the intervals of 10 and 20 s are compared to both experiment and other two-fluid predictions. It is concluded that the two-fluid model used is still very crude, and cannot provide quantitative accurate results, at least for the particular case that was considered. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper assesses the reliability with which fossil reefs record the diversity and community structure of adjacent Recent reefs. The diversity and taxonomic composition of Holocene raised fossil reefs was compared with those of modern reef coral life and death assemblages in adjacent moderate and low-energy shallow reef habitats Of Madang Lagoon, Papua New Guinea. Species richness per sample area and Shannon-Wiener diversity (H') were highest in the fossil reefs, intermediate in the life assemblages, and lowest in the death assemblages. The taxonomic composition of the fossil reefs was most similar to the combination of the life and death assemblages from the modern reefs adjacent to the two fossil reefs. Depth zonation was recorded accurately in the fossil reefs. The Madang fossil reefs represent time-averaged composites of the combined life and death assemblages as they existed at the time the reef was uplifted. Because fossil reefs include overlapping cohorts from the life and death assemblages, lagoonal facies of fossil reefs are dominated by the dominant sediment-producing taxa, which are not necessarily the most abundant in the life assemblage. Rare or slow-growing taxa accumulate more slowly than the encasing sediments and are underrepresented in fossil reef lagoons. Time-averaging dilutes the contribution of rare taxa, rather than concentrating their contribution. Consequently, fidelity indices developed for mollusks in sediments yield low values in coral reef death and fossil assemblages. Branching corals dominate lagoonal facies of fossil reefs because they are abundant, they grow and produce sediment rapidly, and most of the sediment they produce is not exported. Fossil reefs distinguished kilometer-scale variations in community structure more clearly than did the modern life assemblages. This difference implies that fossil,reefs may provide a better long-term record of community structure than modern reefs. This difference also suggests that modern kilometer-scale variation in coral reef community structure may have been reduced by anthropogenic degradation, even in the relatively unimpacted reefs of Madang Lagoon. Holocene and Pleistocene fossil reefs provide a time-integrated historical record of community composition and may be used as long-term benchmarks for comparison with modern, degraded, nearshore reefs. Comparisons between fossil reefs and degraded modern reefs display gross changes in community structure more effectively than they demonstrate local extinction of rare taxa.
Resumo:
Observations of a chemical at a point in the atmosphere typically show sudden transitions between episodes of high and low concentration. Often these are associated with a rapid change in the origin of air arriving at the site. Lagrangian chemical models riding along trajectories can reproduce such transitions, but small timing errors from trajectory phase errors dramatically reduce the correlation between modeled concentrations and observations. Here the origin averaging technique is introduced to obtain maps of average concentration as a function of air mass origin for the East Atlantic Summer Experiment 1996 (EASE96, a ground-based chemistry campaign). These maps are used to construct origin averaged time series which enable comparison between a chemistry model and observations with phase errors factored out. The amount of the observed signal explained by trajectory changes can be quantified, as can the systematic model errors as a function of air mass origin. The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT) can account for over 70% of the observed ozone signal variance during EASE96 when phase errors are side-stepped by origin averaging. The dramatic increase in correlation (from 23% without averaging) cannot be achieved by time averaging. The success of the model is attributed to the strong relationship between changes in ozone along trajectories and their origin and its ability to simulate those changes. The model performs less well for longer-lived chemical constituents because the initial conditions 5 days before arrival are insufficiently well known.
Resumo:
Bivalves mollusks fossils of Bauru Group (Late Cretaceous, Bauru Basin) deposited in scientific collections and collected in outcrops from Monte Alto municipality, São Paulo, are analyzed in their taphonomy. The preservation of recrystallized individual in carbonatic matrix indicates substrate remobilization by unidirectional energetic event in fluvial discharge. The specimens with conjugated valves possess internal sediment similar to the external indicating low exposition to Taphonomical Active Zone, suggesting a bioclastic low time-averaging. The truncate and fragmented posterior portion of specimens from scientific collections is probably related to the incapacity of the taxa to reburrowing the substrate in drowning periods. Both taphonomic patterns corroborate evidences of a fluvial paleoenvironment in the Bauru Group.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The deposits of the Permian Teresina Formation are mainly characterized by fi ne-grained siliciclastic rocks and centimetric intercalations of tempestites (bioclastic sandstones and coquinas). Despite the relevance of the bivalve-rich carbonate beds of the Teresina Formation to paleoenvironmental studies, their taphonomy is still poorly studied. The fossil concentration studied in this work was found in a quarry in the city of Irati, Rio Preto district, Parana State. The fossil concentration is located in the middle/upper portion of the unit, far from the top. The studied bed is a bioclastic, intraclastic, peloidal, grainstone/ packstone, with abundant bivalve shell fragments, pelitic and micritic intraclasts, peloids, rare ooids and oncoids, as well as permineralized of Lycophyta microphylles and fish scales. The grains of this carbonate concentration show: high degree of time-averaging, variable degree of packing (dense to disperse), no sorting and chaotic orientation. Notably, the concentration includes a mixture of elements which are indicative of: a) restrictive, low energy, carbonate environment (peloids, ooids and oncoids); b) subaerial environment surrounding the main body of water (Lycophyta microphylles) and c) quiet-water environment punctuated by storm events, where the suspension-feeding bivalves thrived. At least four depositional events caused by storm fl ows were recorded. The amalgamated nature of the bed is a result of storm events in an intracratonic basin with very low seafl oor slope and low rates of sedimentation and subsidence.
Resumo:
Microstratigraphic, sedimentological, and taphonomic features of the Ferraz Shell Bed, from the Upper Permian (Kazanian-Tatarian?) Corumbatai Formation of Rio Claro Region (the Parana Basin, Brazil), indicate that the bed consists of four distinct microstratigraphic units. They include, from bottom to top, a lag concentration (Unit 1), a partly reworked storm deposit (Unit 2), a rapidly deposited sandstone unit with three thin horizons recording episodes of reworking (Unit 3), and a shell-rich horizon generated by reworking/winnowing that was subsequently buried by storm-induced obrution deposit (Unit 4). The bioclasts of the Ferraz Shell Bed represent exclusively bivalve mollusks. Pinzonella illusa and Terraia aequilateralis are the dominant species. Taphonomic analysis indicates that mollusks are heavily time-averaged (except for some parts of Unit 3). Moreover, different species are time-averaged to a different degree (disharmonious time-averaging). The units differ statistically from one another in their taxonomic and ecological composition, in their taphonomic pattern, and in the size-frequency distributions of the two most common species. Other Permian shell beds of the Parana Basin are similar to the Ferraz Shell Bed in their faunal composition (they typically contain similar sets of 5 to 10 bivalve species) and in their taphonomic, sedimentologic, and microstratigraphic characteristics. However, rare shell beds that include 2-3 species only and are dominated by articulated shells preserved in life position also occur. Diversity levels in the Permian benthic associations of the Parana Basin were very low, with the point diversity of 2-3 species and with the within-habitat and basin-wide (alpha and gamma) diversities of 10 species, at most. The Parana Basin benthic communities may have thus been analogous to low-diversity bivalve-dominated associations of the present-day Baltic Sea. The 'Ferraz-type' shell beds of the Parana Basin represent genetically complex and highly heterogeneous sources of paleontological data. They are cumulative records of spectra of benthic ecosystems time-averaged over long periods of time (10(2)-10(4) years judging from actualistic research). Detailed biostratinomic reconstructions of shell beds can not only offer useful insights into their depositional histories, but may also allow paleoecologists to optimize their sampling designs, and consequently, refine paleoecological and paleoenvironmental interpretations.
Resumo:
Dolostones of the upper Piaui Formation, Parnaiba Basin, northern Brazil, preserve a rich and diversified invertebrate fauna of Morrowan to Desmoinesian age. Among bivalves, Heteroconchia (15 species) is the most diversified, followed by Pteriomorphia (11 species), and rare endobenthic species of the Palaeotaxodonta. (three species). Eleven species of Pteriomorphia are described, including representatives of the genera Parallelodon?, Myalina?, Septimyalina, Caneyella?, Leptodesma (Leptodesma), L. (Leiopteria), Meekopinna?, Aviculopinna?, and Aviculopecten. A new combination, Etheripecten trichotomus, and the oldest member of the Anomiidae recorded, Pindorama nordestina n. gen. and sp., also are described. Details of muscle scars and hinge characters have been recovered for several taxa, thereby refining the knowledge for species diagnoses. Fossil beds in the Esperanca and Mucambo dolostones reveal episodic burial of bivalves in life position. These are internally complex, multistory fossil concentrations recording background and episodic processes. Hence, those fossil concentrations show high degrees of time-averaging and poor palcoecological resolution (except for the bivalves preserved in situ).
Resumo:
Taphonomic analysis of pelecypod concentration in the part of the Teresina Formation (Passa Dois Group), Tiaraju region, State of Rio Grande do Sul, indicates its origins as due to high energy events (storms). The fauna include shallow-burrowing suspensivorous species, associated with this byssate semi-infauna species. Several taphonomic characteristics indicate that the fossiliferous assemblage was subject to little selective processes during transportation. These are: predominance of disarticulated valves (although articulated valves are frequent) and perpendicular, oblique, concordant and nested arrangement of bioclasts in the sedimentary matrix. Absence of fragmentation, bioerosion and incrustation of the bioclasts, suggest fast burial of shells due to high sedimentation rate events. Diagenetic features, indicate that the fossils were later submitted to refossilization and mixing with other non-coeval bioclasts, resulting in some degree of time-averaging.
Resumo:
The effects of time averaging on the fossil record of soft-substrate marine faunas have been investigated in great detail, but the temporal resolution of epibiont assemblages has been inferred only from limited-duration deployment experiments. Individually dated shells provide insight into the temporal resolution of epibiont assemblages and the taphonomic history of their hosts over decades to centuries. Epibiont abundance and richness were evaluated for 86 dated valves of the rhynchonelliform brachiopod Bouchardia rosea collected from the inner shelf. Maximum abundance occurred on shells less than 400 yr old, and maximum diversity was attained within a century. Taphonomic evidence does not support models of live-host colonization, net accumulation, or erasure of epibionts over time. Encrustation appears to have occurred during a brief interval between host death and burial, with no evidence of significant recolonization of exhumed shells. Epibiont assemblages of individually dated shells preserve ecological snapshots, despite host-shell time averaging, and may record long-term ecological changes or anthropogenic environmental changes. Unless the ages of individual shells are directly estimated, however, pooling shells of different ages artificially reduces the temporal resolution of their encrusting assemblages to that of their hosts, an artifact of analytical time averaging. © 2006 by The University of Chicago. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)