988 resultados para Tilted Jet
Resumo:
We report a new STAR measurement of the longitudinal double-spin asymmetry A(LL) for inclusive jet production at midrapidity in polarized p+p collisions at a center-of-mass energy of root s = 200 GeV. The data, which cover jet transverse momenta 5 < p(T) < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements.
Resumo:
The differences on the phase and wavelength of the quasi-stationary waves over the South America generated by El Nino (EN) and La Nina (LN) events seem to affect the daily evolution of the South American Low Level Jet east of the Andes (SALLJ). For the austral summer period of 1977 2004 the SALLJ episodes detected according to Bonner criterion 1 show normal to above-normal frequency in EN years, and in LN years the episodes show normal to below-normal frequency. During EN and LN years the SALLJ episodes were associated with positive rainfall anomalies over the La Plata Basin, but more intense during LN years. During EN years the increase in the SALLJ cases were associated to intensification of the Subtropical Jet (SJ) around 30 degrees S and positive Sea Level Pressure (SLP) anomalies over the western equatorial Atlantic and tropical South America, particularly over central Brazil. This favored the intensification of the northeasterly trade winds over the northern continent and it channeled by the Andes mountain to the La Plata Basin region where negative SLP are found. The SALLJ cases identified during the LN events were weaker and less frequent when compared to those for EN years. In this case the SJ was weaker than in EN years and the negative SLP anomalies over the tropical continent contributed to the inversion of the northeasterly trade winds. Also a southerly flow anomaly was generated by the geostrophic balance due to the anomalous blocking over southeast Pacific and the intense cyclonic transient over the southern tip of South America. As result the warm tropical air brought by the SALLJ encounters the cold extratropical air from the southerly winds over the La Plata basin. This configuration can increase the conditional instability over the La Plata basin and may explain the more intense positive rainfall anomalies in SALLJ cases during LN years than in EN years.
Resumo:
Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims. Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods. In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results. The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 10(9) orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the jet launching base, but only if violent magnetic reconnection events occur with episodic, very short-duration accretion rates which are similar to 100-1000 times larger than the typical average accretion rates expected for more evolved (T Tauri) YSOs.
Resumo:
Correlations of charged hadrons of 1< p(T) < 10 Gev/c with high pT direct photons and pi(0) mesons in the range 5< p(T) < 15 Gev/c are used to study jet fragmentation in the gamma + jet and dijet channels, respectively. The magnitude of the partonic transverse momentum, k(T), is obtained by comparing to a model incorporating a Gaussian kT smearing. The sensitivity of the associated charged hadron spectra to the underlying fragmentation function is tested and the data are compared to calculations using recent global fit results. The shape of the direct photon-associated hadron spectrum as well as its charge asymmetry are found to be consistent with a sample dominated by quark-gluon Compton scattering. No significant evidence of fragmentation photon correlated production is observed within experimental uncertainties.
Resumo:
We have measured the azimuthal anisotropy of pi(0) production for 1 < p(T) < 18 GeV/c for Au + Au collisions at root s(NN) = 200 GeV. The observed anisotropy shows a gradual decrease for 3 less than or similar to p(T) less than or similar to 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least similar to 10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.
Resumo:
It has been postulated that partonic orbital angular momentum can lead to a significant double-helicity dependence in the net transverse momentum of Drell-Yan dileptons produced in longitudinally polarized p + p collisions. Analogous effects are also expected for dijet production. If confirmed by experiment, this hypothesis, which is based on semiclassical arguments, could lead to a new approach for studying the contributions of orbital angular momentum to the proton spin. We report the first measurement of the double-helicity dependence of the dijet transverse momentum in longitudinally polarized p + p collisions at root s = 200 GeV from data taken by the PHENIX experiment in 2005 and 2006. The analysis deduces the transverse momentum of the dijet from the widths of the near-and far-side peaks in the azimuthal correlation of the dihadrons. When averaged over the transverse momentum of the triggered particle, the difference of the root mean square of the dijet transverse momentum between like-and unlike-helicity collisions is found to be -37 +/- 88(stat) +/- 14(sys)t MeV/c.
Resumo:
Pair correlations between large transverse momentum neutral pion triggers (p(T) = 4-7 GeV/c) and charged hadron partners (p(T) = 3-7 GeV/c) in central (0%-20%) and midcentral (20%-60%) Au + Au collisions at root s(NN) = 200 GeV are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot densematter. An out-of-plane trigger particle produces only 26 +/- 20% of the away-side pairs that are observed opposite of an in-plane trigger particle for midcentral (20%-60%) collisions. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism and the space-time evolution of heavy-ion collisions.
Resumo:
We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I(AA), in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.
Resumo:
We report on the event structure and double helicity asymmetry (A(LL)) of jet production in longitudinally polarized p + p collisions at root s = 200 GeV. Photons and charged particles were measured by the PHENIX experiment at midrapidity vertical bar eta vertical bar < 0.35 with the requirement of a high-momentum (> 2 GeV/c) photon in the event. Event structure, such as multiplicity, p(T) density and thrust in the PHENIX acceptance, were measured and compared with the results from the PYTHIA event generator and the GEANT detector simulation. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet A(LL), photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster pT sum (p(T)(reco)). The effect of detector response and the underlying events on p(T)(reco) was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order and perturbative quantum chromodynamics jet production cross section. For 4< p(T)(reco) < 12 GeV/c with an average beam polarization of < P > = 49% we measured Lambda(LL) = -0.0014 +/- 0.0037(stat) at the lowest p(T)(reco) bin (4-5 GeV= c) and -0.0181 +/- 0.0282(stat) at the highest p(T)(reco) bin (10-12 GeV= c) with a beam polarization scale error of 9.4% and a pT scale error of 10%. Jets in the measured p(T)(reco) range arise primarily from hard-scattered gluons with momentum fraction 0: 02 < x < 0: 3 according to PYTHIA. The measured A(LL) is compared with predictions that assume various Delta G(x) distributions based on the Gluck-Reya-Stratmann-Vogelsang parameterization. The present result imposes the limit -a.1 < integral(0.3)(0.02) dx Delta G(x, mu(2) = GeV2) < 0.4 at 95% confidence level or integral(0.3)(0.002) dx Delta G(x, mu(2) = 1 GeV2) < 0.5 at 99% confidence level.
Resumo:
Measurements in Au + Au collisions at root s(NN) = 200 GeV of jet correlations for a trigger hadron at intermediate transverse momentum (p(T,trig)) with associated mesons or baryons at lower p(T,assoc) indicate strong modification of the away-side jet. The ratio of jet-associated baryons to mesons increases with centrality and p(T,assoc). For the most central collisions, the ratio is similar to that for inclusive measurements. This trend is incompatible with in-vacuum fragmentation but could be due to jetlike contributions from correlated soft partons, which recombine upon hadronization.
Resumo:
Azimuthal angle (Delta phi) correlations are presented for charged hadrons from dijets for 0.4 < p(T)< 10 GeV/c in Au+Au collisions at root s(NN)=200 GeV. With increasing p(T), the away-side distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed ""head"" region centered at Delta phi similar to pi and an enhanced ""shoulder"" region centered at Delta phi similar to pi +/- 1.1. The p(T) spectrum for the head region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the shoulder region is independent of centrality and trigger p(T), which offers constraints on energy transport mechanisms and suggests that it contains the medium response to energetic jets.
Resumo:
Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a ""dispersionlike"" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.
Emergent and reentrant fractional quantum Hall effect in trilayer systems in a tilted magnetic field
Resumo:
Magnetotransport measurements in triple-layer electron systems with high carrier density reveal fractional quantum Hall effect at total filling factors nu>2. With an in-plane magnetic field we are able to control the suppression of interlayer tunneling which causes a collapse of the integer quantum Hall plateaus at nu=2 and nu=4, and an emergence of fractional quantum Hall states with increasing tilt angles. The nu=4 state is replaced by three fractional quantum Hall states with denominator 3. The state nu=7/3 demonstrates reentrant behavior and the emergent state at nu=12/5 has a nonmonotonic behavior with increasing in-plane field. We attribute the observed fractional quantum Hall plateaus to correlated states in a trilayer system.
Resumo:
The energy spectrum of an electron confined in a quantum dot (QD) with a three-dimensional anisotropic parabolic potential in a tilted magnetic field was found analytically. The theory describes exactly the mixing of in-plane and out-of-plane motions of an electron caused by a tilted magnetic field, which could be seen, for example, in the level anticrossing. For charged QDs in a tilted magnetic field we predict three strong resonant lines in the far-infrared-absorption spectra.
Resumo:
Magnetotransport measurements on bilayer electron systems reveal repeated reentrance of the resistance minima at filling factors nu=4N+1 and nu=4N+3, where N is the Landau index number, in the tilted magnetic field. At high filling factors, the Shubnikov-de Haas oscillations exhibit beating effects at certain tilt angles. We attribute such behavior to oscillations of the tunneling gap due to Aharonov-Bohm interference effect between cyclotron orbits in different layers. The interplay between quantum and quasiclassical regimes is established.