997 resultados para Tidal effects
Resumo:
A variable-density groundwater model is used to analyse the effects of tidal fluctuations on sea-water intrusion in an unconfined aquifer. It is shown that the tidal activity forces the sea-water to intrude further inland and it also creates a thicker interface than would occur without tidal effects. Moreover, the configuration of the interface is radically changed when the tidal fluctuations are included. This is because of the dramatic changes in the flow pattern and velocity of the groundwater near the shoreline. For aquifer depths much larger than tidal amplitudes, the tidal fluctuation does not have much effect on how far the sea-water intrudes into the aquifer; nevertheless, a significant change in the configuration of concentration contours because of the effect of tidal fluctuations is observed. This change is more noticeable at the top of the aquifer, near the water table, than at the bottom of the aquifer, and is caused by the infiltration of salt water into the top of the aquifer at higher tidal levels. A flatter beach slope, therefore, intensifies this phenomenon. The interface configurations do not change noticeably over the course of a tidal cycle. Neglecting tidal fluctuation effects results in an inaccurate evaluation of the water table elevation at the land end of the aquifer, although no distinguishable difference is seen between the water tables near the shoreline. Where the landward boundary condition is a constant head, the effects of tidal fluctuations on sea-water intrusion are more pronounced than for cases where the landward boundary condition is a specified flux. Also it is shown that the effects of tidal fluctuations are more significant for a sloping beach than for a vertical shoreline and the salt water intrudes further inland for the sloping case. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi-steady-slate rise in the mean water-table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed anti this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water-table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs' life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season. © 2012 Springer-Verlag and AWI.
Resumo:
The study of tides and their interactions with the complex dynamics of the global ocean represents a crucial challenge in ocean modelling. This thesis aims to deepen this study from a dynamical point of view, analysing what are the tidal effects on the general circulation of the ocean. We perform different experiments of a mesoscale-permitting global ocean model forced by both atmospheric fields and astronomical tidal potential, and we implement two parametrizations to include in the model tidal phenomena that are currently unresolved, with particular emphasis to the topographic wave drag for locally dissipating internal waves. An additional experiment using a mesoscale-resolving configuration is used to compare the simulated tides at different resolutions with observed data. We find that the accuracy of modelled tides strongly depends on the region and harmonic component of interest, even though the increased resolution allows to improve the modelled topography and resolve more intense internal waves. We then focus on the impact of tides in the Atlantic Ocean and find that tides weaken the overturning circulation during the analysed period from 1981 to 2007, even though the interannual differences strongly change in both amplitude and phase. The zonally integrated momentum balance shows that tide changes the water stratification at the zonal boundaries, modifying the pressure and therefore the geostrophic balance over the entire basin. Finally, we describe the overturning circulation in the Mediterranean Sea computing the meridional and zonal streamfunctions both in the Eulerian and residual frameworks. The circulation is characterised by different cells, and their forcing processes are described with particular emphasis to the role of mesoscale and a transient climatic event. We complete the description of the overturning circulation giving evidence for the first time to the connection between meridional and zonal cells.
Resumo:
This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. ( 2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass ( TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the positive feedback'' mechanism proposed by Ursino et al. ( 2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.
Resumo:
Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system
Resumo:
Important advances have been made along the last decade in the study of the lithium behavior in solar-type stars. Among the most important discoveries what attracts attention is that the distribution of lithium abundance in the late F-type giant stars tends to be discontinuous, at the same time of a sudden decline in rotation and a gradual decline according to the temperature for giant red stars of such spectral type. Other studies have also shown that synchronized binary systems with evolved components seem to keep more of their original lithium than the unsynchronized systems. evertheless, the connection between rotation and lithium abundance as well as the role of tidal effects on lithium dilution seem to be more complicated matters, depending on mass, metallicity and age. This work brings an unprecedented study about the behavior of lithium abundance in solartype evolved stars based on an unique sample of 1067 subgiant, giant and supergiant stars, 236 of them presenting spectroscopic binary characteristics, with precise lithium abundance and projected rotational speed. Now the lithium-rotation connection for single and binary evolved stars is analyzed taking into account the role of mass and stellar age
Resumo:
One of the best established properties of the single late type evolved stars is that their rotational velocity and lithium content decrease with effective temperature and age. Nevertheless, the root cause of this property, as well as the link between rotation and lithium abundance and, in particular, the effects of binarity on rotation and lithium content in binary systems with evolved component, are not yet completely established. How does the gravitational tides, in binary systems, affects rotational evolution and lithium dilution? Trying to answer these questions, we have carried out an observational survey, in the lithium region centered at the lithium I line A6707.81A, for a large sample of about 100 binary systems with evolved component along the spectral range F, G and K, with the CES spectrometer mounted at the CAT 1.44 m Telescope of the ESO, La Silla, Chile. By combining the abundances of lithium issued from these observations with rotational velocity and orbital parameters, we have found a number of important results. First of all, we confirm that in this class of binary systems rotation is effectively affected by tidal effects. Binary systems with orbital period lower than about 100 days and circular or nearly circular orbits, present rotational velocity enhanced in relation to the single giant stars and to the binary systems with an orbital period larger than 100 days. This is clearly the result of the synchonization between the rotational and orbital motions due to tidal effects. In addition, we have found that lithium abundances in binary systems with giant components present the same gradual decreasing with effective temperature, observed in the single giants of same luminosity class and spectral types. We have found no lithium-rich binary systems, in contrast with single giants. A remarkable result from the present study is the one showing that synchronized binary systems with giant component retains more of their original lithium than the unsynchronized systems. In fact, we have found a possible "inhibited zone", in which synchronized binary systems with giant component having lithium abundance lower than a threshold level should be unusual. Finally, the present study also shows that the binary systems with giant component presenting the highest lithium contents are those with the highest rotation rates
Resumo:
Galactic stellar clusters have a great variety of physical properties that make valuable probes of stellar and galactic chemical evolution. Current studies show a discrepancy between the standard evolutionary models and observations, mainly considering the level of mixing and convective dilution of light elements, as well as to the evolution of the angular momentum. In order to better settle some of these properties, we present a detailed spectroscopic analysis of 28 evolved stars, from the turn-off to the RGB, belonging to the stellar open cluster M67. The observations were performed using UVES+FLAMES at VLT/UT2. We determined stellar parameters and metallicity from LTE analysis of Fe I and Fe II lines between 420 1100 nm. The Li abundance was obtained using the line at 6707.78 ˚A, for the whole sample of stars. The Li abundances of evolved stars of M67 present a gradual decreasing when decreasing the effective temperature. The Li dilution factor for giant stars of M67 with Teff ∼ 4350K is at least 2300 times greater than that predicted by standard theory for single field giant stars. The Li abundance as a function of rotation exhibits a good correlation for evolved stars of M67, with a much smaller dispersion than the field evolved stars. The mass and the age seem to be some of the parameters that influence this connection. We discovered a Li-rich subgiant star in M67 (S1242). It is member of a spectroscopic binary system with a high eccentricity. Its Li abundance is 2.7, the highest Li content ever measured for an evolved star in M67. Two possibilities could explain this anomalous Li content: (i) preservation of the Li at the post turn off stage due to tidal effects, or (ii) an efficient dredge-up of Li, hidden below the convective zone by atomic diffusion occurring in the post turn off stage. We also study the evolution of the angular momentum for the evolved stars in M67. The results are in agreement with previous studies dedicated to evolved stars of this cluster, where stars in the same region of the CM-diagram have quite similar rotations, but with values that indicate an extra breaking along the main sequence. Finally, we analize the distributions of the average rotational velocity and of the average Li abundance as a function of age. With relation to the average Li abundances, stars in clusters and field stars present the same type of exponencial decay law t−β. Such decay is observed for ages lesser than 2 Gyr. From this age, is observed that the average Li abundance remain constant, differently of the one observed in the rotation age connection, where the average rotational velocity decreases slowly with age
Resumo:
ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation
Resumo:
Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.
Resumo:
A new technique for the harmonic analysis of current observations is described. It consists in applying a linear band pass filter which separates the various species and removes the contribution of non-tidal effects at intertidal frequencies. The tidal constituents are then evaluated through the method of least squares. In spite of the narrowness of the filter, only three days of data are lost through the filtering procedure and the only requirement on the data is that the time interval between samples be an integer fraction of one day. This technique is illustrated through the analysis of a few French current observations from the English Channel within the framework of INOUT. The characteristics of the main tidal constituents are given.
Resumo:
Palynological, geochemical, and physical records were used to document Holocene paleoceanographic changes in marine sediment core from Dease Strait in the western part of the main axis of the Northwest Passage (core 2005-804-006 PC latitude 68°59.552'N, longitude 106°34.413'W). Quantitative estimates of past sea surface conditions were inferred from the modern analog technique applied to dinoflagellate cyst assemblages. The chronology of core 2005-804-006 PC is based on a combined use of the paleomagnetic secular variation records and the CALS7K.2 time-varying spherical harmonic model of the geomagnetic field. The age-depth model indicates that the core spans the last ~7700 cal years B.P., with a sedimentation rate of 61 cm/ka. The reconstructed sea surface parameters were compared with those from Barrow Strait and Lancaster Sound (cores 2005-804-004 PC and 2004-804-009 PC, respectively), which allowed us to draw a millennial-scale Holocene sea ice history along the main axis of the Northwest Passage (MANWP). Overall, our data are in good agreement with previous studies based on bowhead whale remains. However, dinoflagellate sea surface based reconstructions suggest several new features. The presence of dinoflagellate cysts in the three cores for most of the Holocene indicates that the MANWP was partially ice-free over the last 10,000 years. This suggests that the recent warming observed in the MANWP could be part of the natural climate variability at the millennial time scale, whereas anthropogenic forcing could have accelerated the warming over the past decades. We associate Holocene climate variability in the MANWP with a large-scale atmospheric pattern, such as the Arctic Oscillation, which may have operated since the early Holocene. In addition to a large-scale pattern, more local conditions such as coastal current, tidal effects, or ice cap proximity may have played a role on the regional sea ice cover. These findings highlight the need to further develop regional investigations in the Arctic to provide realistic boundary conditions for climatic simulations.
Resumo:
The mouth area of the North (Severnaya) Dvina River is characterized by a high concentrations of methane in water (from 1.0 to 165.4 µl/l) and bottom sediments (from 14 to 65000 µl/kg), being quite comparable to productive mouth areas of rivers from the temperate zone. Maximum methane concentrations in water and sediments were registered in the delta in segments of channels and branches with low rates of tidal and runoff currents, where domestic and industrial wastewaters are supplied. In the riverine and marine water mixing zone with its upper boundary, locating far into the delta and moving depending on a phase of the tidal cycle, decrease of methane concentration with salinity increase was observed. The prevailing role in formation of the methane concentration level in water of the mouth area pertains to bottom sediments, which is indicated by close correlation between gas concentrations in these two media. Existence of periodicity in variations of methane concentration in river water downstream caused by tidal effects was found.
Resumo:
This paper presents the first compilation of information on the spatial distribution of scleractinian cold-water corals in the Gulf of Cádiz based on literature research and own observations (video footage, sediment samples). Scleractinian cold-water corals are widely distributed along the Spanish and Moroccan margins in the Gulf of Cádiz, where they are mainly associated with mud volcanoes, diapiric ridges, steep fault escarpments, and coral mounds. Dendrophyllia cornigera, Dendrophyllia alternata, Eguchipsammia cornucopia, Madrepora oculata and Lophelia pertusa are the most abundant reef-forming species. Today, they are almost solely present as isolated patches of fossil coral and coral rubble. The absence of living scleractinian corals is likely related to a reduced food supply caused by low productivity and diminished tidal effects. In contrast, during the past 48 kyr scleractinian corals were abundant in the Gulf of Cádiz, although their occurrence demonstrates no relationship with main climatic or oceanographic changes. Nevertheless, there exists a conspicuous relationship when the main species are considered separately. Dendrophylliids are associated with periods of relatively stable and warm conditions. The occurrence of L. pertusa mainly clusters within the last glacial when bottom current strength in the Gulf of Cádiz was enhanced and long-term stable conditions existed in terms of temperature. Madrepora oculata shows a higher tolerance to abrupt environmental changes.