973 resultados para Tick fever
Resumo:
2016
Resumo:
Descrevem-se 24 surtos de tristeza parasitária bovina no sertão paraibano, sendo 18 de anaplasmose por Anaplasma margimale, dois de babesiose por Babesia bigemina, dois por Babesia não identificada e dois por infecção mista de A. marginale e Babesia sp. Os surtos ocorreram entre agosto de 2007 a outubro de 2009, porém, com uma concentração dos surtos no final do período chuvoso e início do período seco de cada ano, sendo 22 em animais adultos e dois em bezerros de aproximadamente 11 meses. Dois surtos ocorreram em bovinos da raça Nelore, um em animais da raça Gir e os 21 restantes ocorreram em animais das raças Holandês, Pardo Suiço e mestiços das mesmas com zebuínos. Conclui-se que no sertão da Paraíba há áreas de instabilidade enzoótica, ocorrendo surtos de tristeza no final da época de chuvas, principalmente nas áreas de planaltos e serras da região da Borborema e em áreas úmidas como a Bacia do Rio do Peixe, Rio Piranhas e Rio Espinharas em que há a formação de microclimas favoráveis à sobrevivência do carrapato.
Resumo:
A retrospective study of Cattle Tick Fever was made with animals up to one year old, which occurred from 1986-2007 in Botucatu-SP in the influence area of the Veterinary Hospital of the School of Veterinary Medicine and Animal Science - UNESP. There were 232 cases and 57 deaths. The main etiological agent causing the disease on this region is Anaplasma marginale identified as a single agent in 31.5% of the cases. Most of the cases occurred on autumn in mixed-blood animals two to six months old. Predominant clinical signs included apathy, hyporexia or anorexia, dehydration, weight loss and pale mucosa. The high incidence and mortality observed justify prophylactic actions to have the balance between host, agent, vector, and environment, thus avoiding the clinical form of disease and death of livestock herds in the region.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study evaluated rickettsial infection in Amblyomma spp. ticks collected in a farm in Coronel Pacheco, a Brazilian spotted fever (BSF) endemic area. A total of 78 A. cajennense and 78 A. dubitatum free-living adult ticks were collected and tested by polymerase chain reaction (PCR) targeting a fragment of the rickettsial gene gltA. Only one pool of three A. cajennense ticks showed the expected product by PCR. This pool was further tested by PCR using sets of primers targeting the rickettsial genes gltA, ompA, and ompB. All reactions yielded the expected bands that by sequencing, showed 100% identity to the corresponding sequences of the Rickettsia rickettsii gene fragments gltA (1063-bp), ompA (457-bp), and ompB (720-bp). The minimal infection rate of R. rickettii in the A. cajennense population was 1.28% (at least one infected tick within 78 ticks).The present study showed molecular evidence for the presence of R. rickettsii in A. cajennense from a BSF-endemic area in Coronel Pacheco, state of Minas Gerais. Although R. rickettsii has been previously reported infecting A. cajennense ticks in Brazil and other Latin American countries, the present study performed the first molecular characterization of R. rickettsii from the tick A. cajennense.
Resumo:
African tick-bite fever (ATBF) is a newly described spotted fever rickettsiosis that frequently presents with multiple eschars in travelers returning from sub-Saharan Africa and, to a lesser extent, from the West Indies. It is caused by the bite of an infected Amblyomma tick, whose hunting habits explain the typical presence of multiple inoculation skin lesions and the occurrence of clustered cases. The etiological agent of ATBF is Rickettsia africae, an emerging tick-borne pathogenic bacterium. We describe herein a cluster of five cases of ATBF occurring in Swiss travelers returning from South Africa. The co-incidental infections in these five patients and the presence of multiple inoculation eschars, two features pathognomonic of this rickettsial disease, suggested the diagnosis of ATBF. Indeed, the presence of at least one inoculation eschar is observed in 53-100% of cases and multiple eschars in 21-54%. Two patients presented regional lymphadenitis and one a mild local lymphangitis. Though a cutaneous rash is described in 15-46% of cases, no rash was observed in our series. ATBF was confirmed by serology. Thus, ATBF has recently emerged as one of the most important causes of flu-like illness in travelers returning from Southern Africa. The presence of one or multiple eschars of inoculation is an important clinical clue to the diagnosis. It can be confirmed by serology or by PCR of a biopsy of the eschar. Culture can also be done in reference laboratories. Dermatologists and primary care physicians should know this clinical entity, since an inexpensive and efficient treatment is available.
Resumo:
BACKGROUND: Myocarditis and pericarditis are rare complications of rickettsiosis, usually associated with Rickettsia rickettsii and R. conorii. African tick-bite fever (ATBF) is generally considered as a benign disease and no cases of myocardial involvement due to Rickettsia africae, the agent of ATBF, have yet been described. CASE PRESENTATION: The patient, that travelled in an endemic area, presented typical inoculation eschars, and a seroconversion against R. africae, was admitted for chest pains and increased cardiac enzymes in the context of an acute myocarditis. CONCLUSION: Our findings suggest that ATBF, that usually presents a benign course, may be complicated by an acute myocarditis.
Resumo:
Tick-borne relapsing fever in western North America is a zoonosis caused by spirochetes in the genus Borrelia that are transmitted by argasid ticks of the genus Ornithodoros (1). Human disease occurs in many focal areas and is associated with infections of Borrelia hermsii, B. turicatae, and possibly B. parkeri (2,3). Although the ecologic parameters that maintain B. hermsii and B. turicatae differ, human infections usually occur in rustic cabins (B. hermsii) and caves (B. turicatae) inhabited by ticks and their terrestrial vertebrate hosts (1). Recently, Gill et al. (4) provided evidence that the argasid bat tick, Carios kelleyi, feeds upon humans. Subsequently, Loftis et al. (5) used PCR analysis and DNA sequencing to detect in C. kelleyi an unidentifi ed Borrelia species that was closely related to B. turicatae and B. parkeri.
Resumo:
In the laboratory, Amblyomma cajennense (Acari: Ixodidae) (Fabricius) larvae, nymphs and adults were exposed to Rickettsia rickettsii by feeding on needle-inoculated animals, and thereafter reared on uninfected guinea pigs or rabbits. Regardless of the tick stage that acquired the infection, subsequent tick stages were shown to be infected (confirming transstadial and transovarial transmissions) and were able to transmit R. rickettsii to uninfected animals, as demonstrated by serological and molecular analyses. However, the larval, nymphal and adult stages of A. cajennense were shown to be partially refractory to R. rickettsii infection, as in all cases, only part of the ticks became infected by this agent, after being exposed to rickettsemic animals. In addition, less than 50% of the infected engorged females transmitted rickettsiae transovarially, and when they did so, only part of the offspring became infected, indicating that vertical transmission alone is not enough to maintain R. rickettsii in A. cajennense for multiple generations. Finally, the R. rickettsii-infected tick groups had lower reproductive performance than the uninfected control group. Our results indicate that A. cajennense have a low efficiency to maintain R. rickettsii for successive generations, as R. rickettsii-infection rates should decline drastically throughout the successive tick generations.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 38-39.
Resumo:
"September 9, 1912."
Resumo:
BACKGROUND African swine fever (ASF) is one of the most complex viral diseases affecting both domestic and wild pigs. It is caused by ASF virus (ASFV), the only DNA virus which can be efficiently transmitted by an arthropod vector, soft ticks of the genus Ornithodoros. These ticks can be part of ASFV-transmission cycles, and in Europe, O. erraticus was shown to be responsible for long-term maintenance of ASFV in Spain and Portugal. In 2014, the disease has been reintroduced into the European Union, affecting domestic pigs and, importantly, also the Eurasian wild boar population. In a first attempt to assess the risk of a tick-wild boar transmission cycle in Central Europe that would further complicate eradication of the disease, over 700 pre-existing serum samples from wild boar hunted in four representative German Federal States were investigated for the presence of antibodies directed against salivary antigen of Ornithodoros erraticus ticks using an indirect ELISA format. RESULTS Out of these samples, 16 reacted with moderate to high optical densities that could be indicative of tick bites in sampled wild boar. However, these samples did not show a spatial clustering (they were collected from distant geographical regions) and were of bad quality (hemolysis/impurities). Furthermore, all positive samples came from areas with suboptimal climate for soft ticks. For this reason, false positive reactions are likely. CONCLUSION In conclusion, the study did not provide stringent evidence for soft tick-wild boar contact in the investigated German Federal States and thus, a relevant involvement in the epidemiology of ASF in German wild boar is unlikely. This fact would facilitate the eradication of ASF in the area, although other complex relations (wild boar biology and interactions with domestic pigs) need to be considered.