939 resultados para Ti-Nb alloys
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Titanium alloys are widely used in the manufacture of biomedical implants because they possess an excellent combination of physical properties and outstanding biocompatibility. Today, the most widely used alloy is Ti-6Al-4V, but some studies have reported adverse effects with the long-term presence of Al and V in the body, without mentioning that the elasticity modulus value of this alloy is far superior to the bone. Thus, there is a need to develop new Ti-based alloys without Al and V that have a lower modulus, greater biocompatibility, and similar mechanical strength. In this paper, we investigated the effect of Nb as a substitutional solute on the mechanical properties of Ti-Nb alloys, prepared in an arc-melting furnace and characterized by density, X-ray diffraction, optical microscopy, hardness and elasticity modulus measurements. The X-ray and microscopy measurements show a predominance of the α phase. The microhardness values showed a tendency to increase with the concentration of niobium in the alloy. Regarding the elasticity modulus, it was observed a nonlinear behavior with respect to the concentration of niobium. This behavior is associated with the presence of the α phase.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ti and its alloys are widely used as biomaterials. Their main properties are excellent corrosion resistance, relatively low elastic modulus, high specific strength, and good biocompatibility. The development of new Ti alloys with properties favorable for use in the human body is desired. To this end, Ti alloys with Mo, Nb, Zr, and Ta are being developed, because these elements do not cause cytotoxicity. The presence of interstitial elements (such as oxygen and nitrogen) induces strong changes in the elastic properties of the material, which leads to hardening or softening of the alloy. By means of anelastic spectroscopy, we are able to obtain information on the diffusion of these interstitial elements present in the crystalline lattice. In this paper, the effect of oxygen on the anelastic properties of some binary Ti-based alloys was analyzed with anelastic spectroscopy. The diffusion coefficients, pre-exponential factors, and activation energies were calculated for oxygen and nitrogen in these alloys.
Resumo:
Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
We have studied the mineral normandite using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral normandite NaCa(Mn2+,Fe2+)(Ti,Nb,Zr)Si2O7(O,F)2 is a crystalline sodium calcium silicate which contains rare earth elements. Chemical analysis shows the mineral contains a range of elements including Na, Mn2+, Ca, Fe2+ and the rare earth element niobium. No Raman bands are observed above 1100 cm−1. The mineral is characterised by Raman bands observed at 724, 748, 782 and 813 cm−1. Infrared bands are broad; nevertheless bands may be resolved at 723, 860, 910, 958, 933, 1057 and 1073 cm−1. Intense Raman bands at 454, 477 and 513 cm−1 are attributed to OSiO bending modes. No Raman bands are observed in the hydroxyl stretching region, but low intensity infrared bands are observed at 3191 and 3450 cm−1. This observation brings into question the true formula of the mineral.
Resumo:
The microstructural evolution on aging a Co-3 wt pct Ti-2 wt pct Nb alloy has been followed by transmission electron microscopy and diffraction to show that the solid solution decomposed by the spinodal mode. The strengthening observed has been correlated with the differences in lattice parameters of the coexisting phases. The several stages of coarsening have been documented to yield information about their kinetics and morphological changes.Formerly Visiting Assistant Professor, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, is with .
Resumo:
he crystallographic and morphological aspect associated with the formation of γ hydride phase (fct) from the β phase in β abilized Zr-20%Nb alloy has been reported. In this paper the βto γ transformation has been considered in the terms of the phenomenological theory of martensitic crystallography in order to predict the crystallographic features of the γ hydride in the β to γ transformation. The prediction made in the present analysis has been found to match very closely to the experimentally observed habit plane. The possibility of the α to γ transition through the formation of a transient β configuration has been examined.
Resumo:
A nano-scale instability in the beta phase resulting in the formation of the disordered orthorhombic O' phase has been discovered in a fairly dilute binary Ti-Mo alloy, using selected area electron diffraction and high resolution scanning transmission electron microscopy. The O' phase informed in the alloy when the Mo content exceeds a critical value. The instability occurs in beta-solutionized samples that have been quenched to room temperature and is found to co-exist with athermal omega to phase. Interestingly, this nano-scale instability, involving the {110}<1<(1)over bar>0> soft-phonon shuffle, occurs in the beta phase without deliberate additions of either interstitial or substitutional solutes. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion resistance, low elasticity modulus, and excellent biocornpatibility. The research on titanium alloys is concentrated in the beta type, as the Ti-20Mo alloys and the addition of interstitial elements in these metals cause changes in their mechanical properties. The mechanical spectroscopy measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the study of oxygen diffusion in Ti-20Mo alloys using mechanical spectroscopy measurements. A thermally activated relaxation structure was observed in the sample after oxygen doping. It was associated with the interstitial diffusion of oxygen atoms in a solid solution in the alloy. The diffusion coefficient for the oxygen diffusion in the alloy was obtained by the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.
Resumo:
Electrochemical investigation on the as-cast Ti-Mo alloys (4-20 Mo wt.%) applied as biomaterials in Na2SO4 and Ringer physiological solutions is reported. Analyses of the open-circuit potential indicated that all alloys present spontaneous passivation. SEM and cyclic voltammograms obtained in the Ringer solution showed that the samples studied do not present pitting corrosion at potentials up to 8 V (SCE), indicating high corrosion resistance. Open-circuit potential profiles of the anodic oxides growth in both solutions show that the presence of chloride ions during the anodization does not influence the oxides' chemical stability, and also clearly indicate that adding Mo to pure Ti improves the stability of the anodic oxides. All these results suggest Ti-Mo alloys promissory to be applied as biomaterials. (c) 2008 Elsevier Ltd. All rights reserved.