869 resultados para Thyroid Gland -- drug effects
Resumo:
Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.
Resumo:
The regular doubling of cell mass, and therefore of cell protein content, is required for repetitive cell divisions. Preliminary observations have shown that in dog thyrocytes insulin induces protein accumulation but not DNA synthesis, while TSH does not increase protein accumulation but triggers DNA synthesis in the presence of insulin. We show here that EGF and phorbol myristate ester complement insulin action in the same way. HGF is the only factor activating both protein accumulation and DNA synthesis. The effects of insulin on protein accumulation and in permitting the TSH effect are reproduced by IGF-1 and are mediated, at least in part by the IGF-1 receptor. The concentration effect curves are similar for both effects. Similar results are obtained in human thyrocytes. They reflect true cell growth, as shown by increases in RNA content and cell size. Carbachol and fetal calf serum also stimulate protein synthesis and accumulation without triggering DNA synthesis, but they are not permissive for the mitogenic effects of TSH or of the general adenylate cyclase activator, forskolin. Moreover the mitogenic effect of TSH greatly decreased in cells deprived of insulin for 2 days although these cells remain hypertrophic. Hypertrophy may therefore be necessary for cell division, but it is not sufficient to permit it. Three different mechanisms can therefore be distinguished in the mitogenic action of TSH: (1) the increase of cell mass (hypertrophy) induced by insulin or IGF-1; (2) the permissive effect of insulin or IGF-1 on the mitogenic effect of TSH which may involve both the increase of cell mass and the induction of specific proteins such as cyclin D3 and (3) the mitogenic effect of the TSH cyclic AMP cascade proper.
Resumo:
In dog thyroid cells, insulin or IGF-1 induces cell growth and is required for the mitogenic action of TSH through cyclic AMP, of EGF, and of phorbol esters. HGF per se stimulates cell proliferation and is thus the only full mitogenic agent. TSH and cAMP enhance, whereas EGF phorbol esters and HGF repress differentiation expression. In this study, we have investigated for each factor and regulatory cascade of the intermediate step of immediate early gene induction, that is, c-myc, c-jun, jun D, jun B, c-fos, fos B, fra-1, fra-2, and egr1; fra-1 and fra-2 expressions were very low. TSH or forskolin increased the levels of c-myc, jun B, jun D, c-fos, and fos B while decreasing those of c-jun and egr1. Phorbol myristate ester stimulated the expression of all the genes. EGF and HGF stimulated the expression of all the genes except jun D and for EGF fos B. All these effects were obtained in the presence and in the absence of insulin, which shows that insulin is not necessary for the effects of the mitogens on immediate early gene expression. The definition of the repertoire of early immediate genes inductible by the various growth cascades provides a framework for the analysis of gene expression in tumors. (1) Insulin was able to induce all the protooncogenes investigated except fos B. This suggests that fos B could be the factor missing for insulin to induce mitogenesis. (2) No characteristic pattern of immediate early gene expression has been observed for insulin, which induces cell hypertrophy and is permissive for the action of the other growth factors. These effects are therefore not accounted for by a specific immediate early gene expression. On the other hand, insulin clearly enhances the effects of TSH, phorbol ester, and EGF on c-myc, junB, and c-fos expression. This suggests that the effect of insulin on mitogenesis might result from quantitative differences in the transcription complexes formed. (3) c-myc, c-fos, and jun B mRNA induction by all stimulating agents, whether inducing cell hypertrophy, or growth and dedifferentiation, or growth and differentiation, suggests that, although these expressions are not sufficient, they may be necessary for the various growth responses of thyroid cells. (4) The inhibition of c-jun and egr1 mRNA expression, and the marked induction of jun D mRNA appear to be specific features of the TSH cAMP pathway. They might be related to its differentiating action. (5) fos B, which is induced by TSH, forskolin, phorbol ester, and HGF but not by insulin, could be involved in the mitogenic action of the former factors.
Resumo:
Serrano-Nascimento C, Calil-Silveira J, Nunes MT. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration. Am J Physiol Cell Physiol 298: C893-C899, 2010. First published January 27, 2010; doi:10.1152/ajpcell.00224.2009.-Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 mu g/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid.
Resumo:
Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure.
Resumo:
The mandibular gland secretion (MGS) and the faecal fluid (FF) of the leaf-cutting ant Atta sexdens rubropilosa Forel affected the spore germination of selected microfungi isolated from nests of this insect. MGS was more effective than the FF, completely inhibiting the spore germination of four out of six microfungi species.
Resumo:
The sonographic evaluation of thyroid glands in veterinary medicine presents challenges due to the complexity of the anatomical region, professional experience and type of ultrasonography equipment. The technique is considered a versatile diagnostic method that is noninvasive and has a low cost indicated in different clinical situations. Thyroid carcinoma is a malignant tumor that is often invasive and frequently metastatic to regional lymph nodes and lungs. The prognostic indicators for survival after surgery include tumor size, histological type, mobility and presence or absence of metastasis. The objective of the present report is to demonstrate the importance of ultrasound as a complementary method in the evaluation of thyroid carcinoma in dogs. At the Dr. Halim Atique Veterinary Hospital, an eight-year-old male Pit Bull was examined due to a history of firm painless swelling, approximately six inches in diameter, in the ventral cervical region, for about two months. The sonogram showed a nodular area, with defined and regular margins, and heterogeneous hypoechoic parenchyma, with areas of cavitation and swelling of the thyroid. Histopathology of the nodule was consistent with carcinoma. After thyreoidectomy and hormone replacemet, the patient is in good clinical condition.
Resumo:
Iodide transport is necessary for the synthesis of thyroid hormones following accumulation in the follicular lumen out of thyroid cells, via channels unknown with the exception of pendrin. According to our hypothesis, TMEM16A could be the main molecular identity of the channel mediating iodide efflux in the thyroid gland. TMEM16A is the prior candidate for calcium-activated chloride conductance (CaCC). TMEM16A belongs to the TMEM16/anoctamin family comprising ten members (TMEM16A-K). Higher affinity of TMEM16A for iodide and predicted expression in the thyroid gland suggest its mediation of iodide efflux. The aim of this project was to identify the role of TMEM16A in iodide transport in the thyroid gland, by characterizing its molecular expression and functional properties. We demonstrated that TMEM16F, H, K transcripts are expressed in FRTL-5 thyroid cells, as well as TMEM16A, which is TSH-independent. Tumor tissue from human thyroid maintains TMEM16A expression. Functional in vivo experiments in FRTL-5, stably expressing YFP-H148Q/I152L fluorescent protein as a biosensor, showed that iodide efflux is stimulated by agonists of purinergic receptors with an order of potency of ATP>UTP>ADP (compatible with an involvement of P2Y purinergic receptors), and by agonists of adrenergic receptors (epinephrine, norepinephrine and phenylephrine). Iodide efflux was blocked by α-receptor antagonists prazosin and phentolamine, consistent with a role of α1 adrenergic receptors. Iodide efflux was specifically dependent on calcium mobilized from intracellular compartments and induced by the calcium ionophore ionomycin. CaCC blockers suppressed ionomycin-/ATP-/epinephrine-stimulated iodide efflux. Heterologous expression of TMEM16A in CHO K1 cells induced calcium-activated iodide fluxes. All these results support the hypothesis of the involvement of TMEM16A in calcium-dependent iodide efflux induced by receptor agonists in thyroid cells. TMEM16A may represent a new pharmacological target for thyroid cancer therapy, since its blockade may enhance the retention of radioiodide by tumour cells enhancing the efficacy of radioablative therapy.
Resumo:
Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.
Resumo:
BACKGROUND: Papillary or follicular thyroid carcinomas exhibit a relatively benign course. Hence, long-term follow-up studies with well-defined disease stages and treatment details are needed to evaluate treatment strategies. METHODS: Patients who underwent complete resection of well-differentiated thyroid carcinoma (WDTC) confined to the thyroid gland between 1972 and 1990 identified from a prospective database were assessed. Follow-up was performed by interview, review of patient charts, and analysis of the Death Registry. Primary endpoints were overall survival (OS) and disease-specific survival (DSS). Review of histology was performed and extent of thyroid resection, postoperative therapy, and recognized prognostic factors but not lymphadenectomy were evaluated. RESULTS: Of 2,867 patients, 213 had complete resection of WDTC confined to the thyroid gland. Follow-up was completed in 166 patients with median age 54.2 (range, 20-85) years, and median follow-up of 27.2 (range, 15.6-34.5) years. The 10- and 20-year OS was 71 and 55%, respectively. DSS at 10 and 20 years was 81 and 69%, respectively, and correlated with age, histology, tumor size, radio-iodide ablation (RIA), and external beam irradiation (EBR) treatment. No patient died of WDTC more than 18 years after resection. Total or near-total thyroidectomy without lymphadenectomy was not superior to partial thyroidectomy. In multivariate analysis for DSS, age was the dominant factor, which correlated with histology. CONCLUSION: After a median follow-up of 27 years, about one-third of patients died of WDTC. Age, histology and postoperative therapy but not extent of thyroid resection determined DSS.