929 resultados para Third generation therapies
Resumo:
Current research and practice related to the first year experience (FYE) of commencing higher education students are still mainly piecemeal rather than institution-wide with institutions struggling to achieve cross-institutional integration, coordination and coherence of FYE policy and practice. Drawing on a decade of FYE-related research including an ALTC Senior Fellowship and evidence at a large Australian metropolitan university, this paper explores how one institution has addressed that issue by tracing the evolution and maturation of strategies that ultimately conceptualize FYE as “everybody's business.” It is argued that, when first generation co-curricular and second generation curricular approaches are integrated and implemented through an intentionally designed curriculum by seamless partnerships of academic and professional staff in a whole-of-institution transformation, we have a third generation approach labelled here as transition pedagogy. It is suggested that transition pedagogy provides the optimal vehicle for dealing with the increasingly diverse commencing student cohorts by facilitating a sense of engagement, support and belonging. What is presented here is an example of transition pedagogy in action.
Resumo:
A novel third-generation biosensor for hydrogen peroxide (H2O2) was developed by self-assembling gold nanoparticles to hollow porous thiol-functionalized poly(divinylbenzene-co-acrylic acid) (DVB-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in hollow porous thiol-functionalized poly(DVB-co-AA) nanosphere latex to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups of the nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The resulting biosensor showed a wide linear range of 1.0 mu M-8.0 mM and a detection limit of 0.5 mu M estimated at a signal-to-noise ratio of 3. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
Resumo:
A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxi- dase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 mumol l(-1), and the linear range was from 10.0 mumol l(-1) to 7.0 mmol l(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the Studied biosensor exhibited good current repeatability and good fabrication reproducibility.
Resumo:
A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
Resumo:
Data obtained during routine diagnosis of human T-cell lymphotropic virus type 1 (HTLV-1) and 2 (HTLV-2) in ""at-risk"" individuals from Sao Paulo, Brazil using signal-to-cutoff (S/C) values obtained by first, second, and third generation enzyme immunoassay (EIA) kits, were compared. The highest S/C values were obtained with third generation EIA kits, but no correlation was detected between these values and specific antibody reactivity to HTLV-1, HTLV-2, or untyped HTLV (p = 0.302). In addition, use of these third generation kits resulted in HTLV-1/2 false-positive samples. In contrast, first and second generation EIA kits showed high specificity, and the second generation EIA kits showed the highest efficiency, despite lower S/C values. Using first and second generation EIA kits, significant differences in specific antibody detection of HTLV-1, relative to HTLV-2 (p = 0.019 for first generation and p < 0.001 for second generation EIA kits) and relative to untyped HTLV (p = 0.025 for first generation EIA kits), were observed. These results were explained by the composition and format of the assays. In addition, using receiver operating characteristics (ROC) analysis, a slight adjustment in cutoff values for third generation EIA kits improved their specificities and should be used when HTLV ""at-risk"" populations from this geographic area are to be evaluated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We argue that the masses of the first and third fermionic generations, which are respectively of the order of a few MeV up to a hundred GeV, originate from a dynamical symmetry breaking mechanism leading to masses of the order alphamu, where alpha is a small coupling constant, and mu, in the case of the first fermionic generation, is the scale of the dynamical quark mass (approximate to250 MeV). For the third fermion generation mu is the value of the dynamical techniquark mass (approximate to250 GeV). We discuss how this possibility can be implemented in a technicolor scenario, and how the mass of the intermediate generation is generated.
Resumo:
We report on a search for charge-1/3 third-generation leptoquarks (LQ) produced in p (p) over bar collisions at root s =1.96 TeV using the D0 detector at Fermilab. Third-generation leptoquarks are assumed to be produced in pairs and to decay to a tau neutrino and a b quark with branching fraction B. We place upper limits on sigma(p (p) over bar -> LQ (LQ) over bar )B-2 as a function of the leptoquark mass M-LQ. Assuming B=1, we exclude at the 95% confidence level third-generation scalar leptoquarks with M-LQ < 229 GeV.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We have searched for third generation leptoquarks (LQ3) using 1.05fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider operating at s=1.96TeV. We set a 95% C.L. lower limit of 210 GeV on the mass of a scalar LQ3 state decaying solely to a b quark and a τ lepton. © 2008 The American Physical Society.
Resumo:
Results are presented from a search for third-generation leptoquarks and scalar bottom quarks in a sample of proton-proton collisions at √s=7Tev collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.7 fb-1. A scenario where the new particles are pair produced and each decays to a b quark plus a tau neutrino or neutralino is considered. The number of observed events is found to be in agreement with the standard model prediction. Upper limits are set at 95% confidence level on the production cross sections. Leptoquarks with masses below ~450 GeV are excluded. Upper limits in the mass plane of the scalar quark and neutralino are set such that scalar bottom quark masses up to 410 GeV are excluded for neutralino masses of 50 GeV. © 2012 CERN for the benefit of CMS collaboration.
Resumo:
Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a τ lepton and a b quark. The search is based on a data sample of pp collisions at √s=7 TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 fb -1. The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to a τ lepton and a b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, τ lepton, and b quark, λ333′ are obtained. These results are the most stringent for these scenarios to date. © 2013 CERN.