944 resultados para Thiopurine-Methyl-Transferase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination. The C677T substitution variant in the methylenetetrahydrofolate reductase (MTHFR) gene has been associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Higher blood levels of homocysteine have also been reported in MS. Thus, the C677T mutation of the MTHFR gene may influence MS susceptibility. Noradrenaline, a neurotransmitter believed to play an immunosupressive role in neuroinflammatory disorders, is catabolized by catechol-O-methyl transferase (COMT). The COMT G158A substitution results in a three- to four-fold decreased activity of the COMT enzyme, which may influence CNS synaptic catecholamine breakdown and could also play a role in MS inflammation. We tested DNA from Australian MS patients and unaffected control subjects, matched for gender, age and ethnicity. Specifically, we genotyped the MTHFR C677T and the COMT G158A mutations. Genotype distributions showed that the homozygous mutant MTHFR genotype (T/T) and the COMT (H/H) genotype were slightly over-represented in the MS group (16% versus 11% and 24% versus 19%, respectively), but both variations failed to reach statistical significance (P=0.15 and P=0.32, respectively). Hence, results from the present study do not support a major role for either functional gene mutation in MS susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-transcriptional modification of viral mRNA is essential for the translation of viral proteins by cellular translation machinery. Due to the cytoplasmic replication of Paramyxoviruses, the viral-encoded RNA-dependent RNA polymerase (RdRP) is thought to possess all activities required for mRNA capping and methylation. In the present work, using partially purified recombinant RNA polymerase complex of rinderpest virus expressed in insect cells, we demonstrate the in vitro methylation of capped mRNA. Further, we show that a recombinant C-terminal fragment (1717-2183 aa) of L protein is capable of methylating capped mRNA, suggesting that the various post-transcriptional activities of the L protein are located in independently folding domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila arginine methyl-transferase 4 (DART4) belongs to the type I class of arginine methyltransferases. It catalyzes the methylation of arginine residues to monomethylarginines and asymmetrical dimethylarginines. The DART4 sequence is highly similar to mammalian PRMT4/CARM1, and DART4 substrate specificity has been conserved, too. Recently it was suggested that DART4/Carmer functions in ecdysone receptor mediated apoptosis of the polytene larval salivary glands and an apparent up-regulation of DART4/Carmer mRNA levels before tissue histolysis was reported. Here we show that in Drosophila larvae, DART4 is mainly expressed in the imaginal disks and in larval brains, and to a much lesser degree in the polytene larval tissue such as salivary glands. In glands, DART4 protein is present in the cytoplasm and the nucleus. The nuclear signal emanates from the extrachromosomal domain and gets progressively restricted to the region of the nuclear lamina upon pupariation. Surprisingly, DART4 levels do not increase in salivary glands during pupariation, and overexpression of DART4 does not cause precautious cell death in the glands. Furthermore, over- and misexpression of DART4 under the control of the alpha tubulin promoter do not lead to any major problem in the life of a fly. This suggests that DART4 activity is regulated at the posttranslational level and/or that it acts as a true cofactor in vivo. We present evidence that nuclear localization of DART4 may contribute to its function because DART4 accumulation changes from a distribution with a strong cytoplasmic component during the transcriptional quiescence of the young embryo to a predominantly nuclear one at the onset of zygotic transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outcome following traumatic brain injury (TBI) is in large part determined by the combined action of multiple processes. In order to better understand the response of the central nervous system to injury, we utilized an antibody array to simultaneously screen 507 proteins for altered expression in the injured hippocampus, a structure critical for memory formation. Array analysis indicated 41 candidate proteins have altered expression levels 24h after TBI. Of particular interest was catechol-O-methyl transferase (COMT), an enzyme involved in metabolizing catecholamines released following neuronal activity. Altered catecholamine signaling has been observed after brain injury, and may contribute to the cognitive dysfunctions and behavioral deficits often experienced after TBI. Our data shows that COMT expression in the injured ipsilateral hippocampus was elevated for at least 14 d after controlled cortical impact injury. We found strong co-localization of COMT immunoreactivity with the microglia marker Iba1 near the injury site. Since dopamine transporter expression has been reported to be down-regulated after brain injury, COMT-mediated catecholamine metabolism may play a more prominent role in terminating catecholamine signaling in injured areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A azatioprina e a 6 mercaptopurina (6-MCP) são drogas muito utilizada no tratamento das doenças inflamatórias intestinais (DII), porém estão associadas a vários efeitos colaterais. A determinação prévia do genótipo da tiopurina metiltransferase (TPMT) pode identificar pacientes de maior risco de toxicidade a droga. Os objetivos deste estudo foram avaliar a prevalência dos polimorfismos do gene da TPMT em pacientes com DII acompanhados no Hospital Universitário Pedro Ernesto (HUPE) da UERJ, comparando com a prevalência em outras populações e correlacionar a presença desses polimorfismos com a toxicidade às drogas. Foram avaliados 146 pacientes com doença de Crohn (DC) e 73 com retocolite ulcerativa idiopática (RCUI). A pesquisa dos principais genótipos da TPMT (*2, *3, *3C) foi realizada por técnicas de PCR (alelo específico e RFLP). Os achados clínicos foram correlacionados com a genotipagem e avaliados por análises multivariadas. Dentre os pacientes que estavam em uso de azatioprina, 14 apresentaram pancreatite ou elevação de enzimas pancreáticas, 6 apresentaram hepatoxicidade e 2 evoluíram com neutropenia. Os polimorfismos do gene da TPMT foram observados em 37 dos 219 pacientes (8 foram heterozigotos para o genótipo *2, 11 heterozigotos para *3A e 18 foram heterozigotos para o polimorfismo *3C). Não foi observado nenhum homozigoto polimórfico. Uma correlação positiva foi observada entre a elevação de enzimas pancreáticas e os genótipos *2 e *3C. A prevalência dos polimorfismos neste estudo (16,89%) foi maior que a descrita para população caucasiana e em outros estudos brasileiros. Apesar do predomínio do genótipo *3C, não houve ocorrência exclusiva de um polimorfismo, conforme observado em outras populações. A população brasileira devido à sua miscigenação têm características genotípicas próprias diferentes do outros países do mundo. Dois polimorfismos da TPMT (*2 e *3C) estiveram associados à toxicidade ao uso da azatioprina em pacientes com DII no sudeste do Brasil. O teste genético pode auxiliar na escolha da melhor droga e na dose ideal para os pacientes portadores de DII antes do início do tratamento.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presence of 1-methyl adenine in transfer RNA is a feature that Mycobacterium smegmatis shares with only a few other prokaryotes. The enzyme 1-methyl adenine tRNA methyl transferase from this source has been purified and the preliminary results show the presence of two activity peaks with different substrate specificity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catechol-O-methyl transferase (COMT) encodes an enzyme involved in the metabolism of dopamine and maps to a commonly deleted region that increases schizophrenia risk. A non-synonymous polymorphism (rs4680) in COMT has been previously found to be associated with schizophrenia and results in altered activity levels of COMT. Using a haplotype block-based gene-tagging approach we conducted an association study of seven COMT single nucleotide polymorphisms (SNPs) in 160 patients with a DSM-IV diagnosis of schizophrenia and 250 controls in an Australian population. Two polymorphisms including rs4680 and rs165774 were found to be significantly associated with schizophrenia. The rs4680 results in a Val/Met substitution but the strongest association was shown by the novel SNP, rs165774, which may still be functional even though it is located in intron five. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. This association was slightly improved when males were analysed separately possibly indicating a degree of sexual dimorphism. Our results confirm that COMT is a good candidate for schizophrenia risk, by replicating the association with rs4680 and identifying a novel SNP association.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genome segments 1, 2, and 3 of the grass carp reovirus (GCRV), a tentative species assigned to genus Aquareouirus, family Reouiridae, were sequenced. The respective segments 1, 2, and 3 were 3949, 3877, and 3702 nucleotides long. Conserved moths 5' (GUUAUUU) and 3' (UUCAUC) were found at the ends of each segment. Each segment contains a single ORF and the negative strand does not permit identification of consistent ORFs. Sequence analysis revealed that VP2 is the viral polymerase, while VPI might represent the viral guanyly/methyl transferase (involved in the capping process of RNA transcripts) and VP3 the NTPase/helicase (involved in the transcription and capping of viral RNAs), The highest amino acid identities (26-41%) were found with orthoreovirus proteins. Further genomic characterization should provide insight about the genetic relationships between GCRV, aquareoviruses, and orthoreoviruses, It should also permit to precise the taxonomic status of these different viruses. (C) 2000 Academic Press.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les cellules souches hématopoïétiques (CSH) sont rares, mais indispensables pour soutenir la production des cellules matures du sang, un tissu en constant renouvellement. Deux caractéristiques principales les définissent; la propriété d’auto-renouvellement (AR), ou la capacité de préserver leur identité cellulaire suivant une division, et la multipotence, ce potentiel de différentiation leur permettant de générer toutes les lignée hématopoïétiques. De par leurs attributs, les CSH sont utilisée en thérapie cellulaire dans le domaine de la transplantation. Une organisation tissulaire hiérarchique est aussi préservée dans la leucémie, ou cancer du sang, une masse tumorale hétérogène devant être maintenue par une fraction de cellules au potentiel prolifératif illimité, les cellules souches leucémiques (CSL). Les travaux présentés dans ce manuscrit visent à explorer les bases moléculaires de l’AR, encore mal définies. Certains membres de la famille des facteurs de transcription à homéodomaine HOX sont impliqués dans la régulation de l’hématopoïèse normale, et leur dérégulation peut contribuer à la transformation leucémique. En particulier, la surexpression du gène Hoxb4 dans les CSH influence leur destin cellulaire, favorisant des divisions d’auto-renouvellement et leur expansion en culture et in vivo. En général, les CSH s’épuisent rapidement lorsque maintenue hors de leur niche ex vivo. Différents facteurs interagissent avec les HOX et modulent leur liaison à l’ADN, dont la famille des protéines TALE (Three Amino acid Loop Extension), comme MEIS1 et PBX1. En utilisant une stratégie de surexpression combinée de Hoxb4 et d’un anti-sens de Pbx1 dans les CSH, générant ainsi des cellules Hoxb4hiPbx1lo, il est possible de majorer encore d’avantage leur potentiel d’AR et leur expansion in vitro. Les CSH Hoxb4hiPbx1lo demeurent fonctionnellement intactes malgré une modulation extrême de leur destin cellulaire en culture. Les niveaux d’expressions de facteurs nucléaires, seules ou en combinaison, peuvent donc s’avérer des déterminants majeurs du destin des CSH. Afin d’identifier d’autres facteurs nucléaires potentiellement impliqués dans le processus d’AR des CSH, une stratégie permettant d’évaluer simultanément plusieurs gènes candidats a été élaborée. Les progrès réalisés en termes de purification des CSH et de leur culture en micro-puits ont facilité la mise au point d’un crible en RNAi (interférence de l’ARN), mesurant l’impact fonctionnel d’une diminution des niveaux de transcrits d’un gène cible sur l’activité des CSH. Les candidats sélectionnés pour cette étude font partie du grand groupe des modificateurs de la chromatine, plus précisément la famille des histones déméthylases (HDM) contenant un domaine catalytique Jumonji. Ce choix repose sur la fonction régulatrice de plusieurs membres de complexes méthyl-transférases sur l’AR des CSH, dont l’histone méthyl-transférases MLL (Mixed Lineage Leukemia). Cette stratégie a aussi été utilisée dans le laboratoire pour étudier le rôle de facteurs d’asymétrie sur le destin des CSH, en collaboration. Ces études ont permis d’identifier à la fois des régulateurs positifs et négatifs de l’activité des CSH. Entre autre, une diminution de l’expression du gène codant pour JARID1B, une HDM de la lysine 4 de l’histone H3 (H3K4), augmente l’activité des CSH et s’accompagne d’une activation des gènes Hox. En conclusion, divers déterminants nucléaires, dont les facteurs de transcription et les modificateurs de la chromatine peuvent influencer le destin des CSH. Les mécanismes sous-jacents et l’identification d’autres modulateurs de l’AR demeurent des voies à explorer, pouvant contribuer éventuellement aux stratégies d’expansion des CSH ex vivo, et l’identification de cibles thérapeutiques contre les CSL. Mots-clés : cellules souches hématopoïétiques, Hoxb4, Pbx1, auto-renouvellement, histone déméthylases, RNAi

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Flavonoid metabolites remain in blood for periods of time potentially long enough to allow interactions with cellular components of this tissue. It is well-established that flavonoids are metabolised within the intestine and liver into methylated, sulphated and glucuronidated counterparts, which inhibit platelet function. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate evidence suggesting platelets which contain metabolic enzymes, as an alternative location for flavonoid metabolism. Quercetin and a plasma metabolite of this compound, 4'-O-methyl quercetin (tamarixetin) were shown to gain access to the cytosolic compartment of platelets, using confocal microscopy. High performance liquid chromatography (HPLC) and mass spectrometry (MS) showed that quercetin was transformed into a compound with a mass identical to tamarixetin, suggesting that the flavonoid was methylated by catechol-O-methyl transferase (COMT) within platelets. CONCLUSIONS/SIGNIFICANCE: Platelets potentially mediate a third phase of flavonoid metabolism, which may impact on the regulation of the function of these cells by metabolites of these dietary compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is believed that epigenetic mechanisms such as DNA methylation are important for the tumorigenesis and maintenance of the altered state of tumor cells. DNA methylation occurs by the addition of a methyl group to carbon 5 of cytosine, catalyzed by the enzyme DNA methyl-transferase, which can change the expression of a gene, including the tumor suppressor genes. In human squamous cell carcinoma, several features have shown the etiological role of genes in tumor development. Among them, FOXE1 gene (forkhead box E1 - thyroid transcription factor) is presented with an important role in susceptibility to disease. Similarly the FOXE1 methylation pattern could alter the expression of this gene in dogs and predisposed to tumor on. Therefore, this study aims to investigate in dogs, the validity of the strategy employed in humans to analyze the FOXE1 methylation status. DNA extraction from fresh frozen tumoral samples was performed by Wizard Genomic® DNA Purification Kit. The methylation status was determined by MSP-PCR (methylation-specific polymerase chain reaction), using 2.0 ng of DNA treated with sodium bisulphate. One hundred micrograms of bisulphite-modified DNA was amplified using primers specific for either methylated or unmethylated DNA (primers sequences are available at http://pathology2.jhu.edu/pancreas/primer.pdf). The analysis of fragments was loaded on to 7% polyacrylamide gels and silver nitrate staining. In this stage of technical approach, 60% were FOXE1 hypermethylated. In conclusion, it was observed that the standard technique for assessing the methylation pattern of gene FOXE1 in humans can be used for the same evaluation in dogs. The correlation of these molecular data with clinical and histopathological parameters may have diagnostic and prognostic value and still be used as a tumor marker for therapeutic decision and surgical approach

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Characterization of Human Respiratory Syncytial Virus (HRSV) protein interactions with host cell components is crucial to devise antiviral strategies. Viral nucleoprotein, phosphoprotein and matrix protein genes were optimized for human codon usage and cloned into expression vectors. HEK-293T cells were transfected with these vectors, viral proteins were immunoprecipitated, and co-immunoprecipitated cellular proteins were identified through mass spectrometry. Cell proteins identified with higher confidence scores were probed in the immunoprecipitation using specific antibodies. The results indicate that nucleoprotein interacts with arginine methyl-transferase, methylosome protein and Hsp70. Phosphoprotein interacts with Hsp70 and tropomysin, and matrix with tropomysin and nucleophosmin. Additionally, we performed immunoprecipitation of these cellular proteins in cells infected with HRSV, followed by detection of co-immunoprecipitated viral proteins. The results indicate that these interactions also occur in the context of viral infection, and their potential contribution for a HRSV replication model is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During reverse transcription of retroviral RNA, synthesis of (−) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5′ long terminal repeat. For (+) strand synthesis using a (−) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3′ terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (−) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The investigation of biologically initiated pathways to psychological disorder is critical to advance our understanding of mental illness. Research has suggested that attention bias to emotion may be an intermediate trait for depression associated with biologically plausible candidate genes, such as the serotonin transporter (5-HTTLPR) and catechol-o-methyl-transferase (COMT) genes, yet there have been mixed findings in regards to the precise direction of effects. The experience of recent stressful life events (SLEs) may be an important, yet currently unstudied, moderator of the relationship between genes and attention bias as SLEs have been associated with both gene expression and attention to emotion. Additionally, although attention biases to emotion have been studied as a possible intermediate trait associated with depression, no study has examined whether attention biases within the context of measured genetic risk lead to increased risk for clinical depressive episodes over time. Therefore, this research investigated both whether SLEs moderate the link between genetic risk (5-HTTLPR and COMT) and attention bias to emotion and whether 5-HTTLPR and COMT moderated the relationship between attention biases to emotional faces and clinical depression onset prospectively across 18 months within a large community sample of youth (n= 467). Analyses revealed a differential effect of gene. Youth who were homozygous for the low expressing allele of 5-HTTLPR (S/S) and had experienced more recent SLEs within the last three months demonstrated preferential attention toward negative emotional faces (angry and sad). However, youth who were homozygous for the high expressing COMT genotype (Val/Val) and had experienced more recent SLEs showed attentional avoidance of positive facial expressions (happy). Additionally, youth who avoided negative emotion (i.e., anger) and were homozygous for the S allele of the 5-HTTLPR gene were at greater risk for prospective depressive episode onset. Increased risk for depression onset was specific to the 5-HTTLPR gene and was not found when examining moderation by COMT. These findings highlight the importance of examining risk for depression across multiple levels of analysis, such as combined genetic, environmental, and cognitive risk, and is the first study to demonstrate clear evidence of attention biases to emotion functioning as an intermediate trait predicting depression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The X-ray structure of human phenylethanolamine N-methyltransferase (hPNMT) complexed. with its product, S-adenoSyl-L-homocysteine (4), and the most potent inhibitor reported to date, SK&F 64139 (7), was used to identify the residues involved in inhibitor binding. Four of these residues, Va153, Lys57, Glu219 and Asp267, were replaced, in turn, with alanine. All variants had increased K-m values for phenylethanolamine (10), but only D267A showed a noteworthy (20-fold) decrease in its k(cat) value. Both WT hPNMT and D267A had similar k(cat) values for a rigid analogue, anti-9-amino-6-(trifluoromethyl)benzonorbornene (12), suggesting that Asp267 plays an important role in positioning the substrate but does not participate directly in catalysis. The K-i values for the binding of inhibitors such as 7 to the E219A and D267A variants increased by 2-3 orders of magnitude. Further, the inhibitors were shown to bind up to 50-fold more tightly in the presence of S-adenoSyl-(L)-methionine (3), suggesting that the binding of the latter brings about a conformational change in the enzyme.