186 resultados para Thiols
Resumo:
Hydrolysis of beta-lactam antibiotics by beta-lactamases (e. g., metallo-beta-lactamase, m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins and imipenem. It is shown in this paper that the thiol/thione moieties eliminated from certain cephalosporins by m beta l-mediated hydrolysis readily react with molecular iodine to produce ionic compounds having S-I bonds. While the reaction of MTT with iodine produced the corresponding disulfide, MDT and DMETT produced the charge-transfer complexes MDT-I-2 and DMETT-I-2, respectively. Addition of two equivalents of I-2 to MDT produced a novel cationic complex having an almost linear S-I+-S moiety and I-5(-) counter anion.However, this reaction appears to be highly solvent dependent. When the reaction of MDT with I2 was carried out in water, the reaction produced a monocation having I-5(-), indicating the reactivity of MDT toward I2 is very similar to that of the most commonly used antithyroid drug methimazole (MMI). In contrast to MMI, MDT and DMETT, the triazine-based compound MTDT acts as a weak donor toward iodine. (C)2010 Elsevier Ltd. All rights reserved.
Resumo:
Herein we present a simple and highly efficient method for the synthesis of beta and gamma-amino thiols via regioselective ring opening of sulfamidates with tetrathiomolybdate 1. The generality of this methodology has been shown by synthesizing carbohydrate derived beta-amino thiol. The scope and versatility of this methodology has been demonstrated by synthesizing biologically important unnatural amino acids like isocysteines in optically pure form. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Organised multilayers were formed from the controlled self-assembly of ferrocene alkyl thiols on Au(111) surfaces. The control was accomplished by increasing the concentration of the thiol solutions used for the assembly. Cyclic voltammetry, ellipsometry, scanning probe microscopy (STM and AFM) and in situ FTIR spectroscopy were used to probe the differences between mono- and multilayers of the same compounds. Electrochemical desorption studies confirmed that the multilayer structure is attached to the surface via one monolayer. The electrochemical behaviour of the multilayers indicated the presence of more than one controlling factor during the oxidation step, whereas the reduction was kinetically controlled which contrasts with the behaviour of monolayers, which exhibit kinetic control for the oxidation and reduction steps. Conventional and imaging ellipsometry confirmed that multilayers with well-defined increments in thickness could be produced. However, STM indicated that at the monolayer stage, the thiols used promote the mobility of Au atoms on the surface. It is very likely that the multilayer structure is held together through hydrogen bonding. To the best of out knowledge, this is the first example of a controlled one-step growth of multilayers of ferrocenyl alkyl thiols using self-assembly techniques.
Resumo:
In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.
Resumo:
Coadsorption of ferrocene-terminated alkanethiols (FcCO(2)(CH2)(8)SH, Fc=(mu(5)-C5H5)Fe(mu(5)-C5H4)) with alkylthiophene thiols (2-mercapto-3-n-octylthiophene) yields stable, electroactive self-assembled monolayers on gold. The resulting mixed monolayer provides an energetically favorable hydrophobic surface for the adsorption of the surfactant aggregates in aqueous solution. The adsorptions have been characterized via their effect on the redox properties of ferrocenyl alkanethiols immobilized as minority components in the monolayers and on the interfacial capacitance of the electrode. Surfactant adsorption causes a decrease in the overall capacitance at the electrode and dramatically shifts the redox potential for ferrocene oxidation in a positive or negative direction depending on the identity of the surfactant employed. A structural model is proposed in which the alkane chains of the adsorbed surfactants interdigitate with those of the underlying self-assembled monolayer, leading to the formation of a hybrid bilayer membrane.
Resumo:
Monolayers of biological compounds including redox proteins and enzymes, and phospholipids have been immobilized on a gold electrode surface through self-assembling. These proteins and enzymes, such as cytochrome c, cytochrome c oxidase and horseradish peroxidase (HRP), immobilized covalently to the self-assembled monolayers (SAMs) of 3-mercaptopropionic acid on a gold electrode, communicate directly electrons with the electrode surface without mediators and keep their physiological activities. The electron transfer of HRP with the gold electrode can also be mediated by the alkanethiol SAMs with electroactive group viologens on the gold electrode surface. All these direct electrochemistries of proteins and enzymes might offer an opportunity to build a third generation of biosensors without mediators for analytes, such as H2O2, glucose and cholesterol. Monensin and valinomycin have been incorporated into the bilayers on the gold electrode consisting of the SAMs of alkanethiol and a lipid monolayer, which have high selectivity for monovalent ions, and the resulting Na+ or K+ sensor has a wide linear range and high stability. These self-assembly systems provide a good mimetic model for studying the physiological function of a membrane and its associated enzyme. (C) 1997 Elsevier Science S.A.
Resumo:
We report a new inkless catalytic muCP technique that achieves accurate, fast, and complete pattern reproduction on SAMs of Boc- and TBS-protected thiols immobilized on gold using a polyurethane-acrylate stamp functionalized with covalently bound sulfonic acids. Pattern transfer is complete at room temperature just after one minute of contact and renders sub-200 nm size structures of chemically differentiated SAMs.
Resumo:
OBJECTIVES: This study reports the development, characterisation and microbiological testing of surface-modified polyvinylchloride (PVC) films for the purpose of reducing bacterial adherence.
METHODS: Irreversible covalent surface modification was achieved via nucleophilic substitution of fluorinated thiol-terminated compounds onto the polymer backbone. Four fluorinated modifiers, 2,3,5,6-tetrafluorothiophenol (TFTP), 4-(trifluoromethyl)thiophenol (TFMTP), 3,5-bis(trifluoromethyl)benzenethiol (BTFMBT) and 3,3,4,4,5,5,6,6,7, 7,8,8,9,9,10,10,10-heptadecafluoro-decane-1-thiol (HDFDT), were investigated. Modification was confirmed using attenuated total reflectance infrared spectroscopy; Raman mapping demonstrated that modification was homogenous on the macroscopic scale. The influence of fluorination on surface hydrophobicity was studied by contact angle analysis. The effect on microbial adherence was examined using Pseudomonas aeruginosa and Staphylococcus aureus.
KEY FINDINGS: The resultant changes in contact angle relative to control PVC ranged from -4 degrees to +14 degrees . In all cases, adherence of P. aeruginosa and S. aureus was significantly reduced relative to control PVC, with adherence levels ranging from 62% and 51% for TFTP-modified PVC to 32% and 7% for TFMTP-modified PVC.
CONCLUSIONS: These results demonstrate an important method in reducing the incidence of bacterial infection in PVC medical devices without compromising mechanical properties.
Resumo:
Here we report an example of a mixed thiol monolayer on the surface of Ag nanoparticles which promotes adsorption and quantitative SERS detection of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”); the thiols in the mixed monolayers act synergistically since MDMA does not adsorb onto colloids modified with either of the thiols separately.