991 resultados para Thiobarbituric acid
Resumo:
Frozen samples of mechanically deboned chicken meat (MDCM) with skin were irradiated with gamma radiation doses of 0.0 kGy (control) and 3 kGy at 2 different radiation dose rates: 0.32 kGy/h (3 kGy) and 4.04 kGy/h (3 kGy). Batches of irradiated and control samples were evaluated during 11 d of refrigerated (2 +/- 1 degrees C) storage for the following parameters: total psychrotrophic bacteria count, thiobarbituric acid reactive substances (TBARS), evaluation of objective color (L*, a*, and b*) and a sensory evaluation (irradiated odor, oxidized odor, pink and brown colors). No statistical difference (P > 0.05) was found amongst the TBARS values obtained for the MDCM samples irradiated with dose rates of 0.32 and 4.04 kGy/h. There was a significant increase (P < 0.05) in the psychrotrophic bacterial count as from the 7th day of refrigerated storage, for the MDCM samples irradiated at the dose rate of 4.04 kGy/h. With respect to the attribute of oxidized odor, the samples irradiated with a dose rate of 0.32 kGy/h showed a stronger intensity and were significantly different (P < 0.05) from the sample irradiated with a dose rate of 4.04 kGy/h on days 0 and 2 of refrigerated storage. Irradiation with a dose rate of 4.04 kGy/h (3 kGy) was shown to be the best condition for the processing of MDCM according to the evaluation of all the variables, under the conditions of this study. Practical Application The results obtained for the application of different dose rates of ionizing radiation to mechanically deboned chicken meat will provide the food industry with information concerning the definition of the best processing conditions to maximize the sensory and food quality.
Resumo:
Methionine-choline-deficient diet represents a model for the study of the pathogenesis of steatohepatitis. Male rats were divided into three groups, the first group receiving a control diet and the other two groups receiving a methionine-choline-deficient diet for 1 month (MCD1) and for 2 months (MCD2), respectively. The livers of the animals were collected for the determination of vitamin E, thiobarbituric acid reactive substances (TBARS), GSH concentration, DNA damages, and for histopathological evaluation. The hepatic TBARS and GSH content was higher (P < 0.05) in the groups receiving the experimental diet (MCD1 and MCD2) compared to control diet, and hepatic vitamin E concentration differed (P < 0.05) between the MCD1 and MCD2 groups, with the MCD2 group presenting a lower concentration. Damage to hepatocyte DNA was greater (P < 0.05) in the MCD2 group (262.80 DNA injuries/100 hepatocytes) compared to MCD1 (136.4 DNA injuries/100 hepatocytes) and control diet (115.83 DNA injuries/100 hepatocytes). Liver histopathological evaluation showed that steatosis, present in experimental groups was micro- and macro-vesicular and concentrated around the centrolobular vein, zone 3, with preservation of the portal space. The inflammatory infiltrate was predominantly periductal and the steatosis and inflammatory infiltrate was similar in the MCD1 and MCD2 groups, although the presence of Mallory bodies was greater in the MCD2 group. The study describes the contribution of a methionine-choline-deficient diet to the progression of steatosis, lipid peroxidation and hepatic DNA damage in rats, serving as a point of reflection about the role of these nutrients in the western diet and the elevated non-alcoholic steatohepatitis rates in humans.
Resumo:
Purpose - Chronic ethanol consumption induces lipid peroxidation by increasing free radicals or reducing antioxidants and may increase damage to hepatic DNA. Tannins are polyphenolic metabolites present in various plants and one of their effects is antioxidant activity that reduces lipoperoxidation, as is the case for vitamin E. This paper aims to assess the role of tannic acid and vitamin E in lipid peroxidation and in DNA damage in rats receiving ethanol. Design/methodology/approach - A total of 60 Wistar rats were divided into six groups: control + ethanol (0-24hs), tannic acid + ethanol (0-24 hs), and vitamin E + ethanol (0-24 hs). The animals were sacrificed immediately (0 hour) or 24 hours after a period of four weeks of ethanol administration and the following measurements were made: plasma vitamin E and liver glutathione, thiobarbituric acid resistant substances, and a-tocopherol. The comet test was also applied to hepatocytes. Findings - Ethanol administration led to an increase in DNA damage (148.67 +/- 15.45 versus 172.63 +/- 18.94) during a period of 24 hours which was not detected in the groups receiving tannic acid or vitamin E. Steatosis was lower in the groups receiving tannic acid. Originality/value - The paper highlights that antioxidant role of vitamin E and of tannic acid in biological systems submitted to oxidative stress should be reevaluated, especially regarding the protective role of tannic acid against hepatic steatosis.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
We supplemented diets with a-tocopheryl acetate (100 mg/kg) and replaced beef tallow (BT) in feeds with increasing doses of n-6- or n-3-rich vegetable fat sources (linseed and sunflower oil), and studied the effects on the fatty acid (FA) composition, the a-tocopherol (aT) content and the oxidative stability of rabbit plasma and liver. These effects were compared with those observed in a previous study in rabbit meat. As in meat, the content of saturated, monounsaturated and trans FA in plasma and liver mainly reflected feed FA profile, except stearic acid in liver, which increased as feeds contained higher doses of vegetable fat, which could be related to an inhibition of the activity of the stearoyl-CoA-desaturase. As linseed oil increased in feeds, the n-6/n-3 FA ratio was decreased in plasma and liver as a result of the incorporation of FA from diets and also, due to the different performance and selectivity of desaturase enzymes. However, an increase in the dose of vegetable fat in feeds led to a significant reduction in the aT content of plasma and liver, which was greater when the fat source was linseed oil. Increasing the dose of vegetable fat in feeds also led to an increase in the susceptibility to oxidation (lipid hydroperoxide (LHP) value) of rabbit plasma, liver and meat and on the thiobarbituric acid (TBA) values of meat. Although the dietary supplementation with a-tocopheryl acetate increased the aT content in plasma and liver, it did not modify significantly their TBA or LHP values. In meat however, both TBA and LHP values were reduced by the dietary supplementation with a-tocopheryl acetate. The plasma aT content reflected the aT content in tissues, and correlated negatively with tissue oxidability. From the studied diets, those containing 1.5% linseed oil plus 1.5% BT and 100 mg of a-tocopheryl acetate/kg most improved the FA composition and the oxidative stability of rabbit tissues.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol1tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The a-tocopherol (aT) content of tissues was reduced in response to the lower aT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/aT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL)-cholesterol, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.
Resumo:
The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil), corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity) in mouse liver. The activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT), biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60%) in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05) compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25%) was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS) was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively) and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively), suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.
Resumo:
In this study, the influence of the addition of antioxidants in vivo on the fatty acid composition of the flesh of a freshwater fish known as pacu (Piaractus mesopotamicus) is verified. Four groups (one being the control group) of juvenile pacu were cultured on isocaloric and isoproteic diets. The lipid source was soybean oil and diets were added with either 100 ppm of alpha-tocopheryl acetate, or 100 ppm of BHT or 1.4 g of rosemary extract (Herbalox(R))/kg diet. The fatty acid composition of the lipids of the different groups was determined before and after irradiation at 2 and 3 kGy, respectively, for the evaluation of the protective effects of the different antioxidants. Similarly, thiobarbituric acid reactive substances (TBARS) were determined from irradiated and nonirradiated samples. The results showed that the use of antioxidants altered the fatty acid composition of the fillets. TEARS and irradiation confirmed their important role in protecting against lipid oxidation. Among all the antioxidants used, tocopherol was the most efficient, as shown by the highest percentage of polyunsaturated fatty acids (PUFA), by the lowest values of TEARS and by the analyses of the individual fatty acid levels at different irradiation doses. Significant statistical differences were observed only in 17% of the fatty acids in the fillets of the groups. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Background: Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index.Methods: All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good).Results: Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1.Conclusions: Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status. © 2013 Trapé et al.; licensee BioMed Central Ltd.
Resumo:
Abstract Background Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index. Methods All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good). Results Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1. Conclusions Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status.
Resumo:
Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
Resumo:
The biochemical responses of the enzymatic antioxidant system of a drought-tolerant cultivar (IACSP 94-2094) and a commercial cultivar in Brazil (IACSP 95-5000) grown under two levels of soil water restriction (70% and 30% Soil Available Water Content) were investigated. IACSP 94-2094 exhibited one additional active superoxide dismutase (Cu/Zn-SOD VI) isoenzyme in comparison to IACSP 95-5000, possibly contributing to the heightened response of IACSP 94-2094 to the induced stress. The total glutathione reductase (GR) activity increased substantially in IACSP 94-2094 under conditions of severe water stress; however, the appearance of a new GR isoenzyme and the disappearance of another isoenzyme were found not to be related to the stress response because the cultivars from both treatment groups (control and water restrictions) exhibited identical changes. Catalase (CAT) activity seems to have a more direct role in H2O2 detoxification under water stress condition and the shift in isoenzymes in the tolerant cultivar might have contributed to this response, which may be dependent upon the location where the excessive H2O2 is being produced under stress. The improved performance of IACSP 94-2094 under drought stress was associated with a more efficient antioxidant system response, particularly under conditions of mild stress.
Resumo:
Recent data suggests that cholesteryl ester transfer protein (CETP) activity may interact with acute stress conditions via inflammatory-oxidative response and thrombogenesis. We investigated this assumption in patients with ST-elevation myocardial infarction (STEMI). Consecutive patients with STEMI (n = 116) were enrolled <24-h of symptoms onset and were followed for 180 days. Plasma levels of C-reactive protein (CRP), interleukin-2 (IL-2), tumor necrosis factor (TNFα), 8-isoprostane, nitric oxide (NOx) and CETP activity were measured at enrollment (D1) and at fifth day (D5). Flow-mediated dilation (FMD) was assessed by ultrasound and coronary thrombus burden (CTB) was evaluated by angiography. Neither baseline nor the change of CETP activity from D1 to D5 was associated with CRP, IL-2, TNFα, 8-isoprostane levels or CTB. The rise in NOx from D1 to D5 was inferior [3.5(-1; 10) vs. 5.5(-1; 12); p < 0.001] and FMD was lower [5.9(5.5) vs. 9.6(6.6); p = 0.047] in patients with baseline CETP activity above the median value than in their counterparts. Oxidized HDL was measured by thiobarbituric acid reactive substances (TBARS) in isolated HDL particles and increased from D1 to D5, and remaining elevated at D30. The change in TBARS content in HDL was associated with CETP activity (r = 0.72; p = 0.014) and FMD (r = -0.61; p = 0.046). High CETP activity at admission was associated with the incidence of sudden death and recurrent MI at 30 days (OR 12.8; 95% CI 1.25-132; p = 0.032) and 180 days (OR 3.3; 95% CI 1.03-10.7; p = 0.044). An enhanced CETP activity during acute phase of STEMI is independently associated with endothelial dysfunction and adverse clinical outcome.