982 resultados para Thermomechanical properties
Resumo:
Poly(3-hydroxybutyrate) (PHB) is a very promising biopolymer. In order to improve its processability and decrease its brittleness, PHB/elastomer blends can be prepared. In the work reported, the effect of the addition of a rubbery phase, i.e. ethylene - propylene-diene terpolymer (EPDM) or poly(vinyl butyral) (PVB), on the properties of PHB was studied. The effects of rubber type and of changing the PHB/elastomer blend processing method on the crystallinity and physical properties of the blends were also investigated. For blends based on PHB, the main role of EPDM is its nucleating effect evidenced by a decrease of crystallization temperature and an increase of crystallinity with increasing EPDM content regardless of the processing route. While EPDM has a weak effect on PHB glass transition temperature, PVB induces a marked decrease of this temperature thank to its plasticizer that swells the PHB amorphous phase. A promising solution to improve the mechanical properties of PHB seems to be the melt-processing of PHB with both plasticizer and EPDM. In fact, the plasticizer is more efficient than the elastomer in decreasing the PHB glass transition temperature and, because of the nucleating effect of EPDM, the decrease of the PHB modulus due to the plasticizer can be counterbalanced. (C) 2010 Society of Chemical Industry
Resumo:
Fully biodegradable composite materials were obtained through reinforcement of a commercially available thermoplastic starch (TPS) matrix with rapeseed fibers (RSF). The influence of reinforcement content on the water sorption capacity, as well as thermal and thermo-mechanical properties of composites were evaluated. Even though the hydrophilic character of natural fibers tends to favor the absorption of water, results demonstrated that the incorporation of RSF did not have a significant effect on the water uptake of the composites. DSC experiments showed that fibers restricted the mobility of the starch macromolecules from the TPS matrix, hence reducing their capacity to crystallize. The viscoelastic behaviour of TPS was also affected, and reinforced materials presented lower viscous deformation and recovery capacity. In addition, the elasticity of materials was considerably diminished when increasing fiber content, as evidenced in the TMA and DMTA measurements
Resumo:
The aim of this work was to study the effect of the poly(vinyl alcohol) (PVA) concentration on the thermal and viscoelastic properties of films based on blends of gelatin and PVA using differential scanning calorimetry (DSC) and dynamic-mechanical analysis (DMA). One glass transition was observed between 43 and 49 degrees C on the DSC curves obtained in the first scanning of the blended films, followed by fusion of the crystalline portion between 116 and 134 degrees C. However, the DMA results showed that only the films with 10% PVA had a single peak in the tan 5 spectrum. However, when the PVA concentration was increased the dynamic mechanical spectra showed two peaks on the tan 6 curves, indicating two T(g)s. Despite this phase separation behavior the Gordon and Taylor model was successfully applied to correlate T, as a function of film composition, thus determining k = 7.47. In the DMA frequency tests, the DMA spectra showed that the storage modulus values decreased with increasing temperature. The master curves for the PVA-gelatin films were obtained applying the TTS principle (T(r) = 100 degrees C). The WLF model was thus applied allowing for the determination of the constants C(1) and C(2). The values of these constants increased with increasing PVA concentrations in the blend: C(1) = 49-66 and C(2) = 463-480. These values were used to calculate the fractional free volume of the films at the T(g) and the thermal expansion coefficient of the films above the T(g). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In layered silicate-epoxy nanocomposites organic modification of the silicates makes them compatible with the epoxy which intercalates into the clay galleries. The effect of clay dispersion on epoxies of high Tg is not clear. Decreases of the epoxy Tg have been frequently reported. The presence of clay may cause stoichiometry imbalances that conduces to the formation of imperfect networks
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tanomaru-Filho M, Silveira GF, Reis JMSN, Bonetti-Filho I, Guerreiro-Tanomaru JM. Effect of compression load and temperature on thermomechanical tests for gutta-percha and Resilon (R). International Endodontic Journal, 44, 1019-1023, 2011.Aim To analyse a method used to evaluate the thermomechanical properties of gutta-percha and Resilon at different temperatures and compression loads.Methodology Two hundred and seventy specimens measuring 10 mm in diameter and 1.5 mm in height were made from the following materials: conventional gutta-percha (GCO). thermoplastic gutta-percha (GTP) and Resilon (R) cones (RE). After 24 h, the specimens were placed in water at 50 degrees C. 60 degrees C or 70 degrees C for 60 s. After that, specimens were placed between two glass slabs, and loads weighing 1.0, 3.0 or 5.0 kg were applied. Images of the specimens were digitized before and after the test and analysed using imaging software to determine their initial and final areas. The thermomechanical property of each material was determined by the difference between the initial and final areas of the specimens. Data were subjected to ANOVA and SNK tests at 5% significance. To verify a possible correlation between the results of the materials, linear regression coefficients (r) were calculated.Results Data showed higher flow area values for RE under all compression loads at 70 degrees C and under the 5.0 kg load at 60 degrees C (P < 0.05). Regarding gutta-percha, GTP showed higher flow under loads weighing 3.0 and 5.0 kg. at 60 and 70 degrees C (P < 0.05). GCO presented higher flow at 70 degrees C with a load of 5.0 kg. Regression analyses showed a poor linear correlation amongst the results of the materials under the different experimental conditions.Conclusion Gutta-percha and Resilon (R) cones require different compression loads and temperatures for evaluation of their thermomechanical properties. For all materials, the greatest flow occurred at 70 degrees C under a load of 5.0 kg: therefore. these parameters may be adopted when evaluating endodontic tilling materials.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The relative amounts of amorphous and crystalline ?- and a-phases in polyamide-6 nanocomposites, estimated from the deconvolution of X-ray diffraction peaks using Gaussian functions, correlates with their mechanical, thermomechanical, and barrier properties. The incorporation of organoclay platelets (Cloisite 15A and 30B) induced the crystallization of the polymer in the ? form at expense of the amorphous phase, such that 12 wt % of Cloisite is enough to enhance the mechanical and the thermomechanical properties. However, higher nanofiller loads were necessary to achieve good barrier effects, because this property is mainly dependent on the tortuous path permeation mechanism of the gas molecules through the nanocomposite films. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Significant interest in nanotechnology, is stimulated by the fact that materials exhibit qualitative changes of properties when their dimensions approach ”finite-sizes”. Quantization of electronic, optical and acoustic energies at the nanoscale provides novel functions, with interests spanning from electronics and photonics to biology. The present dissertation involves the application of Brillouin light scattering (BLS) to quantify and utilize material displacementsrnfor probing phononics and elastic properties of structured systems with dimensions comparable to the wavelength of visible light. The interplay of wave propagation with materials exhibiting spatial inhomogeneities at sub-micron length scales provides information not only about elastic properties but also about structural organization at those length scales. In addition the vector nature of q allows, for addressing the directional dependence of thermomechanical properties. To meet this goal, one-dimensional confined nanostructures and a biological system possessing high hierarchical organization were investigated. These applications extend the capabilities of BLS from a characterization tool for thin films to a method for unravelingrnintriguing phononic properties in more complex systems.
Resumo:
The thermal and thermomechanical properties of poly(phenylene sulphide) (PPS) based nanocomposites incorporating a polymer derivative covalently anchored onto single-walled carbon nanotubes (SWCNTs) were investigated. The grafted fillers acted as nucleating agents, increasing the crystallization temperature and degree of crystallinity of the matrix. They also enhanced its thermal stability, flame retardancy, glass transition (Tg) and heat deflection temperatures while reduced the coefficient of thermal expansion at temperatures below Tg. A strong rise in the thermal conductivity, Young?s modulus and tensile strength was found with increasing filler loading both in the glassy and rubbery states. All these outstanding improvements are ascribed to strong matrix-filler interfacial interactions combined with a compatibilization effect that results in very homogeneous SWCNT dispersion. The results herein offer useful insights towards the development of engineering thermoplastic/CNT nanocomposites for high-temperature applications.
Resumo:
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.
Resumo:
Paper-based phenolic laminates are used extensively in the electrical industry. Many small components are fabricated from these materials by the process known as punching. Recently an investigation was carried out to study the effect of processing variables on the punching properties. It was concluded that further work would be justified and that this should include a critical examination of the resin properties in a more controlled and systematic manner. In this investigation an attempt has been made to assess certain features of the resin structure in terms of thermomechanical properties. The number of crosslinks in the system was controlled using resins based on phenol and para-cresol formulations. Intramolecular hydrogen bonding effects were examined using substituted resins and a synthetically derived phenol based on 1,3-di-(o-hydroxyphenyl) propane.. A resin system was developed using the Friedel Crafts reaction to examine inter-molecular hydrogen bonding at the resin-paper interface. The punching properties of certain selected resins were assessed on a qualitative basis. In addition flexural and dynamic mechanical properties were determined in a general study of the structure-property relationships of these materials. It has been shown that certain features of the resin structure significantly influenced mechanical properties. :F'urther, it was noted that there is a close relationship between punching properties, mechanical damping and flexural strain. This work includes a critical examination of the curing mechanism and views are postulated in an attempt to extend knowledge in this area of the work. Finally, it is argued that future work should be based on a synthetic approach and that dynamic mechanical testing would provide a powerful tool In developing a deeper understanding of the resin fine structure.
Resumo:
Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.
Resumo:
En la primera part del present treball es presenta la investigació duta a terme sobre la reacció d'hidroesterificació d'olefines. S'analitzen els factors que afecten la reactivitat i quimioselectivitat de les reaccions d'hidroesterificació i deuterioesterificació en sistemes catalítics basats en complexes de pal·ladi amb lligands auxiliars de tipus fosfina. Es presenta un estudi detallat del mecanisme catalític a través del qual tenen lloc aquestes reaccions. La determinació del mecanisme de reacció ha estat aplicada a la obtenció d'una versió enantioselectiva de la mateixa. En una segona part del treball s'han analitzat diversos sistemes de modificació superficial de fibres naturals i el seu efecte sobre la compatibilitat fibra - matriu en materials compòsits de matriu poliolefínica. S'han caracteritzat les propietats superficials de fibres de pi químicament modificades. Les fibres naturals modificades s'han utilitzat en la preparació de materials compòsits, les propietats mecàniques, tèrmiques i termomecàniques dels quals han estat caracteritzades i analitzades.
Resumo:
P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.