975 resultados para Thermoluminescence (TL)
Resumo:
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W-H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 degrees C for 1-4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 degrees C. However, in TL of ODH used samples, a single glow peak at 376 degrees C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 degrees C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline Nd2O3:Ni2+ (2 mol%) phosphor has been prepared by a low temperature (similar to 400 degrees C) solution combustion method, in a very short time (<5 min). Powder X-ray diffraction results confirm the single hexagonal phase of nanopowders. Scanning electron micrographs show that nanophosphor has porous nature and the particles are agglomerated. Transmission electron microscopy confirms the nanosize (20-25 nm) of the crystallites. The electron paramagnetic resonance (EPR) spectrum exhibits a symmetric absorption at g approximate to 2.77 which suggests that the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (chi) has been evaluated. Raman study show major peaks, which are assigned to F-g and combination of A(g) + E-g modes. Thermoluminescence (TL) studies reveal well resolved glow peaks at 169 degrees C along with shoulder peak at around 236 degrees C. The activation energy (E in eV), order of kinetics (b) and frequency factor (s) were estimated using glow peak shape method. It is observed that the glow peak intensity at 169 degrees C increases linearly with gamma-dose which suggest that Nd2O3:Ni2+ is suitable for radiation dosimetry applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1-5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 degrees C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50-150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 degrees C along with relatively resolved glow peak at 180 degrees C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 degrees C along with two well defined peaks at similar to 215 and 275 degrees C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A series of Pr3+ (1-9 mol%) doped CdSiO3 nanophosphors have been prepared for the first time by a low temperature solution combustion method using oxalyldihydrizide (ODH) as a fuel. The final product was characterized by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The average crystallite size was calculated using Debye-Scherrer's formula and Williamson-Hall (W-H) plots and found to be in the range 31-37 nm. The optical energy band gap (E-g) of undoped for Pr3+ doped samples were estimated from Tauc relation which varies from 5.15-5.36 eV. Thermoluminescence (TL) properties of Pr3+ doped CdSiO3 nanophosphor has been investigated using gamma-irradiation in the dose range 1-6 kGy at a heating rate of 5 degrees C s(-1). The phosphor shows a well resolved glow peak at similar to 171 degrees C along with shouldered peak at 223 degrees C in the higher temperature side. It is observed that TL intensity increase with increase of Pr3+ concentration. Further, the TL intensity at 171 degrees C is found to be increase linearly with increase in gamma-dose which is highly useful in radiation dosimetry. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics was estimated by Luschiks method and the results are discussed. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
YAlO3:Ni2+ (0.1 mol%) doped nanophosphor was synthesised by a low temperature solution combustion method. Powder X-ray diffraction (PXRD) confirms the orthorhombic phase of yttrium aluminate (YAlO3) along with traces of Y3Al5O12. Scanning Electron microscopy (SEM) shows that the powder particles appears to be spherical in shape with large agglomeration. The average crystallite sizes appeared to be in the range 45-90 nm and the same was confirmed by transmission electron microscopy (TEM) and Williamson-Hall (W-H) plots. Electron Paramagnetic Resonance (EPR) and photoluminescence (PL) studies reveal that Ni2+ ions are in octahedral coordination. Thermoluminescence (TL) glow curve consists of two peaks with the main peak at similar to 224 degrees C and a shouldered peak at 285 degrees C was recorded in the range 0.2-15 kGy gamma-irradiated samples. The TL intensity was found to be increasing linearly for 224 degrees C and 285 degrees C peaks up to 1 kGy and thereafter it shows sub-linear (up to 8 kGy) and saturation behavior. The trap parameters namely activation energy (E), order of kinetics (b), frequency factor (s) at different gamma-doses were determined using Chens glow peak shape and Luschiks methods then the results are discussed in detail. Simple glow peak structure, the 224 degrees C peak in YAlO3:Ni2+ nanophosphor can be used in personal dosimetry. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Structural, iono (IL) and thermoluminescence (TL) studies of Zn2SiO4:Sm3+ (1-5 mol%) nanophosphor bombarded with swift heavy ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) cm(-2) have been carried out. The average crystallite sizes for pristine and ion irradiated for 3.91 x 10(12) ions cm(-2) and 21.48 x 10(12) ions cm(-2) were found to be 34, 26 and 20 nm. With increase of ion fluence, the intensity of XRD peaks decreases and FWHM increases. The peak broadening indicates the stress induced point/clusters defects produced due to heavy ion irradiation. IL studies were carried out for different Sm3+ concentrations in Zn2SiO4 by irradiating with ion fluence of 15.62 x 10(12) ions cm(-2). The characteristic emission peaks at similar to 562, 599, 646 and 701 nm were recorded by exciting Si7+ ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). These peaks were attributed to (4)G(5/2)-> H-6(5/2) (562 nm), (4)G(5/2)-> H-6(7/2) (599 nm), (4)G(5/2)-> H-6(9/2) (646 nm), and (4)G(5/2)-> H-6(5/2) (701 nm) transitions of Sm3+. The highest emission was recorded at 3 mol% of Sm3+ doped Zn2SiO4. TL studies were carried out for 3 mol% Sm3+ concentration in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). Two U glow peaks at 152 and 223 degrees C were recorded. The kinetic parameters (E, b, and s), were estimated using Chen's peak shape method. Simple glow curve structure (223 degrees C), highly resistive, increase in TL. intensity up to 19.53 x 10(12) ions cm(-2), simple trap distribution makes Zn2SiO4:Sm3+ (3 mol%) phosphor highly useful in radiation dosimetry.
Resumo:
alpha-Al2O3:C crystal shows excellent thermoluminescence (TL) and optically stimulated luminescence (OSL) properties but the real role carbon plays in this crystal is still not clearly understood so far. In this work, alpha-Al2O3:C crystal doping with different amounts of carbon were grown by the temperature gradient technique, and TL and OSL properties of as-grown crystals were investigated. Additionally, a mechanism was proposed to explain the role of carbon in forming the TL and OSL properties of alpha-Al2O3:C. TL and OSL intensities of as-grown crystals increase with the increasing amount of carbon doping in the crystal, but no shift is found in the glow peak location at 465 K. As the amount of carbon doping in the crystals decreases, OSL decay rate becomes faster. With the increase in heating rate, the integral TL response of as-grown crystals decreases and glow peak shifts to higher temperatures. TL response decrease rate increases with the increasing amount of carbon doping in the crystals. All the TL and OSL response curves of as-grown crystals show linear-sublinear-saturation characteristic, and OSL dose response exhibits higher sensitivity and wider linear dose range than that of TL. The crystal doping with 5000 ppm carbon shows the best dosimetric properties. Carbon plays the role of a dopant in alpha-Al2O3:C crystal and four-valent carbon anions replace the two-valent anions of oxygen during the crystal growth process, and large amounts of oxygen vacancies were formed, which corresponds to the high absorption coefficient of F and F+ centers in the crystals.
Resumo:
The thermoluminescence (TL) of ZnS nanoparticles is reported. The TL intensity increases as the particle size is decreased. The consistency of the size dependence of the TL with that of the surface fluorescence indicates that the TL may be related to the surface states. TL may be caused by the recombination of carriers released from the surface states or defect sites by heating. Smaller particles have higher surface/volume ratio and more surface states, therefore contain more accessible carriers for TL. Besides, the carrier recombination rate increases upon decreasing size due to the increase of the overlap between the electron and hole wave functions. These two effects may make the TL increase upon decreasing size of the particles. The appearance of TL prior to any radiation reveals that trapped carriers have pre-existed. The investigation of TL may provide some useful information about the surface states that may explain the size dependence of the surface fluorescence. (C) 1997 American Institute of Physics.
Resumo:
Thermoluminescence (TL) of CdS clusters encapsulated in zeolite-Y is reported for the first time. The TL of the clusters is much stronger than that of the bulk CdS and increases as the CdS loading decreases. This inverse dependence of TL intensity upon CdS loading is caused mainly by the size-effect of the clusters. All samples exhibit almost the same glow peak position and shape, indicating that traps or surface states are not sensitive to the cluster sizes.
Resumo:
LiCaBO3 was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Dy3+, Tb3+. TM3+ and Ce3+, on thermoluminescence (TL) of LiCaBO3 phosphor was discussed. We studied the TL properties and some dosimetric characteristics of Ce3+-activated LiCaBO3 phosphor in detail. The effect of the concentration of Ce3+ on TL was investigated, the result of which showed that the optimum Ce3+ concentration was 1 mol%. The TL kinetic parameters of LiCaBO3:0.01 Ce3+ were studied by computer glow curve deconvolution (CGCD) method.
Resumo:
Polycrystalline powder sample of KSr4(BO3)(3) was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Tb3+, TM3+ and Ce3+, on thermoluminescence (TL) of KSr4(BO3)(3) Phosphor was discussed. The TL, photoluminescence (PL) and some dosimetric properties of Ce3+-activated KSr4(BO3)(3) phosphor were studied. The effect of the concentration of Ce3+ on TL intensity was investigated and the result showed that the optimum Ce3+ concentration was 0.2 mol%. The TL kinetic parameters of KSr4(BO3)(3):0.002 Ce3+ phosphor were calculated by computer glow curve deconvolution (CGCD) method. Characteristic emission peaking at about 407 and 383 nm due to the 4f(0)5d(1) -> F-2((5/2),(7/2)) transitions of Ce3+ ion were observed both in PL and three-dimensional (3D) TL spectra. The dose-response of KSr4(BO3)(3):0.002 Ce3+ to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of KSr4(BO3)(3):0.002 Ce3+ was also investigated.
Resumo:
The thermoluminescence (TL) properties of Ce3+ doped NaSr4(BO3)(3) phosphor under the beta-ray irradiation were reported. The polycrystalline sample was synthesized by high temperature solid-state reaction. The TL glow curve of NaSr4(BO3)(3):Ce3+ phosphor was composed of only one peak. TL kinetic parameters of NaSr4(BO3)(3):Ce3+ were deduced by the peak shape method, the activation energy (E) was 0.590 eV and the frequency factor was 1.008x10(6) s(-1). TL dose response was linear in the range of measurement. The 3-dimensional (3D) TL emission spectrum was also recorded, the emission spectrum consisted of two bands located at 441 and 479 nm respectively, corresponding to the characteristic 4f(0)5d(1)-> F-2((5/2,7/2)) transitions of the Ce3+ ion. The fading behavior of the NaSr4(BO3)(3):Ce3+ phosphor over a period of 15 d was also studied.
Resumo:
Sr2Mg(BO3)(2) thermoluminescence (TL) phosphor was synthesized by a high temperature solid state reaction and the effect of Li+, Bi3+, Gd3+ or Ti4+ as a codopant on TL of Sr2Mg(BO3)(2) : Dy was investigated. The results show that Li+ as a codopant improves the emission intensity of high temperature TL peak of Sr2Mg(BO3)(2) : Dy phosphor whereas the addition of Bi3+, Gd3+ or Ti3+ leads to the decrease of TL intensity. The TL emission bands of Sr2Mg(BO3)(2) : Dy phosphors with Li+, Bi3+, Gd3+ or Ti4+ as a codopant are situated at 480, 579, 662 and 755 nm, which were attributed to the characteristic F-4(9/2)-> H-6(15/2), F-4(9/2)-> H-6(13/2), F-4(9/2)-> H-6(11/2) and F-4(9/2)-> H-6(9/2) transitions of Dy3+ ion, consistent with the emission of Sr2Mg(BO3)(2) : Dy phosphors. The kinetics parameters of 234 degrees C TL peak of Sr2Mg(BO3)(2) Dy-0.04(3+), (Li-0.04(+)) phosphor with the values of trap depth E=1.1 eV, frequency factor s=6.3 x 10(9) s(-1) were estimated by a peak shape method, which obey the second order kinetics.
Resumo:
Sr2Mg(BO3)(2) thermoluminescence (TL) phosphor was synthesized by a high temperature solid state reaction and the effect of Li+, Bi3+, Gd3+ or Ti4+ as a codopant on TL of Sr2Mg(BO3)(2) : Dy was investigated. The results show that Li+ as a codopant improves the emission intensity of high temperature TL peak of Sr2Mg(BO3)(2) : Dy phosphor whereas the addition of Bi3+, Gd3+ or Ti3+ leads to the decrease of TL intensity. The TL emission bands of Sr2Mg(BO3)(2) : Dy phosphors with Li+, Bi3+, Gd3+ or Ti4+ as a codopant are situated at 480, 579, 662 and 755 nm, which were attributed to the characteristic F-4(9/2)-> H-6(15/2), F-4(9/2)-> H-6(13/2), F-4(9/2)-> H-6(11/2) and F-4(9/2)-> H-6(9/2) transitions of Dy3+ ion, consistent with the emission of Sr2Mg(BO3)(2) : Dy phosphors. The kinetics parameters of 234 degrees C TL peak of Sr2Mg(BO3)(2) Dy-0.04(3+), (Li-0.04(+)) phosphor with the values of trap depth E=1.1 eV, frequency factor s=6.3 x 10(9) s(-1) were estimated by a peak shape method, which obey the second order kinetics.
Resumo:
Borates LiSr4(BO3)(3) were synthesized by high-temperature solid-state reaction. The thermoluminescence (TL) and some of the dosimetric characteristics of Ce3+-activated LiSr4(BO3)(3) were reported. The TL glow curve is composed of only one peak located at about 209 degrees C between room temperature and 500 degrees C. The Optimum Ce3+ concentration is 1 mol% to obtain the highest TL intensity. The TL kinetic parameters of LiSr4(BO3)(3):0.01Ce(3+) were studied by the peak shape method. The TL dose response is linear in the protection dose ranging from 1 mGy to 1 Gy. The three-dimensional thermoluminescence emission spectra were also studied, peaking at 441 and 474 nm due to the characteristic transition of Ce3+.