11 resultados para Thermochromism
Resumo:
The tetrachlorocuprate(II) ion can crystallize in two different structures with the piperazinium dication (pipzH(2)). Both structures contain discrete CuCl42- species. A yellow compound (pipzH(2))[CuCl4]. 2H(2)O (1) is monoclinic (C2/c, Z = 4, a = 10.538(3) Angstrom, b = 7.4312(5) Angstrom, c = 17.281(4) Angstrom, beta = 111.900(10)degrees) and contains the CuCl42- ion as a distorted tetrahedron. A green compound (pipzH(2))(2)[CuCl4]. Cl-2. 3H(2)O (2) is triclinic (P (1) over bar, Z = 2, a = 9.264(3) Angstrom, b = 10.447(2) Angstrom, c = 11.366(2) Angstrom, alpha = 68.38 degrees, beta = 82.86(2)degrees, gamma = 83.05(2)degrees) and contains the CuCl42- ion with a square planar geometry. This latter compound shows thermo/photochromism, changing from green to yellow upon heating or laser irradiation.
Resumo:
As a function of temperature, the layered compound K2Na[Ag(CN)213 displays dramatic variations in luminescence thermochromism with major trend changes occurring around 80 K. In order to understand these interesting optical properties, high-resolution neutron diffraction investigations were performed on a polycrystalline sample of this material in the temperature range from 1.5 to 300 K, and previous synchrotron X-ray data of Larochelle et al. (Solid State Commun. 114, 155 (2000)) were reinterpreted. The corresponding significant structural changes were found to be continuous with an anomalous increase of the monoclinic c-lattice parameter with decreasing temperature, associated with slight reorientations of two inequivalent, approximately linear N-C-Ag-C-N units. In the whole temperature range, the crystal structure is monoclinic with the space group C2/m. Based on the structural results, the major luminescence thermochromism changes around 80 K are attributed to the dominance of a back energy transfer process from low- to high-energy excitons at high temperatures. (E) 2002 Elsevier Science (USA).
Resumo:
Vanadium dioxide (VO2) is a promising material with large interest in construction industry and architecture, due to its thermochromic properties. This material may be used to create "smart" coatings that result in improvements in the buildings energy efficiency, by reducing heat exchanges and, consequently, the need for acclimatization. In this work, VO2 thin films and coatings were produced and tested in laboratory, to apply in architectural elements, such as glass, rooftop tiles and exterior paints. Thin films were produced by RF magnetron sputtering and VO2 nanoparticles were obtained through hydrothermal synthesis, aiming to create "smart" windows and tiles, respectively. These coatings have demonstrated the capability to modulate the transmittance of infrared radiation by around 20%. The VO2 nanoparticle coatings were successfully applied on ceramic tiles. The critical temperature was reduced to around 40ºC by tungsten doping. Ultimately, two identical house models were built, in order to test the VO2 coatings, in real atmospheric conditions during one of the hottest months of the year, in Portugal – August.
Resumo:
The thermochromic behavior exhibited by vanadium(IV) alkoxides, [V2(μ-OPr i)2(OPr i) 6] and [V2(μ-ONep)2(ONep)6 ], OPr i = isopropoxide and ONep = neopentoxide, was studied by molecular modeling using DFT, TDDFT and INDO/S methods. The vibrational and electronic spectra calculated for [V2(μ-OPr i)2(OPr i) 6] were very similar to the experimental data registered for crystalline samples of the complex and for its solutions at low temperature (< 210 K), while spectra recorded at high temperature (> 315 K) were compatible with those calculated for the monomeric form, [V(OPr i)4]. These results consistently point to a monomer/dimer equilibrium as an explanation for the solution thermochromism of {V(OPr i)4}n. In spite of the structural similarity between [V2(μ-ONep)2(ONep)6 ] and [V2(μ-OPr i)2(OPr i) 6] in the solid state, the thermochromic behavior of the former could not be explained by the same model, and the possibility of tetranuclear aggregation at low temperatures was also investigated.
Resumo:
An undergraduate experiment that illustrates the phenomenon of perichromism-the sensitivity of a dye to its microenvironment, as assessed by color changes of its solutions-is described. An easily prepared perichromic imine is synthesized and characterized, and its solvatochromism, thermochromism, halochromism, and preferential solvation in binary solvent mixtures are demonstrated by visual inspection of its solutions. The results are rationalized by invoking solute - solvent interactions in the various media.
Resumo:
Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N-dimethylaniline (DMA) and sulfur dioxide (SO(2)). The formation of a deep red oil by the reaction of SO(2) with DMA is an evidence of the charge transfer (CT) nature of the DMA-SO(2) interaction. The DMA -SO(2) normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm(-1), which are enhanced when resonance is approached. These bands are assigned to nu(s)(SO(2)) and nu(phi-N) vibrational modes, respectively, confirming the interaction between SO(2) and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO(2) with the ring pi electrons, which gives rise to a pi-pi* low-energy CT electronic transition, as confirmed by time-dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA-SO(2) spectrum at the B3LYP/6-311++g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO(2). Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Solvatochromism and thermochromism describe how a solvent or environment affects the photophysical behavior of a photoluminescent solute. The most common use of solvatochromism is as a probe in which the polarity of a solvent in which a solvatochromic solute is dissolved can be spectroscopically measured. Solvatochromic and thermochromic studies of tryptanthrin in several different solvents are reported. Absorption and corrected emission spectra for tryptanthrin at ~10-6 M concentrations are reported in four aprotic and nine alcoholic solvents. The absorption spectra are relatively unaffected by changes in solvent polarity and by differences in the hydrogen bonding ability of the alcoholic solvents. The emission spectra are much more affected by changes in solvent polarity and hydrogen bonding ability. In aprotic solvents, emission energy decreases and emission intensity increases with increasing solvent polarity. In the alcoholic solvents, emission energy also decreases with increasing solvent polarity. However, emission intensity for the alcoholic solvents varies significantly from the aprotic solvents over similar polarity ranges. This suggests that in the alcoholic solvents, hydrogen bonding ability correlates better than polarity to emission energy and intensity trends. The absorption and emission data in the aprotic solvents were also used to estimate the ground and emitting excited state dipole moments for tryptanthrin. The value obtained for the ground state dipole moment (2.37 D) agrees with theoretical results (2.06 D) and a previously reported experimental value (2.0 D). Attempts to explain previously reported results and conclusions with respect to the solvatochromic behavior of the aromatic carbonyls fluorenone and benzo(b)fluorenone were explored in an attempt to understand the solvatochromic response of tryptanthrin. Such attempts include models dependent on non-radiative decay pathways like intersystem crossing, internal conversion, and hydrogen bonding interactions.