978 resultados para Thermal-behavior


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal behavior of two polymorphic forms of rifampicin was studied by DSC and TG/DTG. The thermoanalytical results clearly showed the differences between the two crystalline forms. Polymorph I was the most thermally stable form, the DSC curve showed no fusion for this species and the thermal decomposition process occurred around 245 ºC. The DSC curve of polymorph II showed two consecutive events, an endothermic event (Tpeak = 193.9 ºC) and one exothermic event (Tpeak = 209.4 ºC), due to a melting process followed by recrystallization, which was attributed to the conversion of form II to form I. Isothermal and non-isothermal thermogravimetric methods were used to determine the kinetic parameters of the thermal decomposition process. For non-isothermal experiments, the activation energy (Ea) was derived from the plot of Log β vs 1/T, yielding values for polymorph form I and II of 154 and 123 kJ mol-1, respectively. In the isothermal experiments, the Ea was obtained from the plot of lnt vs 1/T at a constant conversion level. The mean values found for form I and form II were 137 and 144 kJ mol-1, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently we are witnessing a huge concern of society with the parameters of comfort of the buildings and the energetic consumptions. It is known that there is a huge consumption of non-renewable sources of energy. Thus, it is urgent to develop and explore ways to take advantage of renewable sources of energy by improving the energy efficiency of buildings. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. However, the incorporation of phase change materials in mortars modifies its characteristics. The main purpose of this study was mechanical and thermal characterization of mortars with incorporation of PCM in mortars based in different binders. The binders studied were aerial lime, hydraulic lime, gypsum and cement. For each type of binder a reference composition (0% PCM) and a composition with incorporation of 40% of PCM were developed. It was possible to observe that the incorporation of PCM in mortars caused differences in properties such as workability, compressive strength, flexural strength and adhesion, however leads to an improvement of thermal behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural deep eutectic solvents (NADES) have shown to be promising sustainable media for a wide range of applications. Nonetheless, very limited data is available on the properties of these solvents. A more comprehensive body of data on NADES is required for a deeper understanding of these solvents at molecular level, which will undoubtedly foster the development of new applications. NADES based on choline chloride, organic acids, amino acids and sugars were prepared, and their density, thermal behavior, conductivity and polarity were assessed, for different NADES compositions. The NADES studied can be stable up to 170 Â°C, depending on their composition. The thermal characterization revealed that all the NADES are glass formers and some, after water removal, exhibit crystallinity. The morphological characterization of the crystallizable materials was performed using polarized optical microscopy which also provided evidence of homogeneity/phase separation. The conductivity of the NADES was also assessed from 0 to 40 Â°C. The more polar, organic acid-based NADES presented the highest conductivities. The conductivity dependence on temperature was well described by the Vogelâ Fulcherâ Tammann equation for some of the NADES studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM). The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid Ln-OHCO3-DMCP compounds, where Ln represents lanthanides (III) and yttrium (III) ions and DMCP is the anion 4-dimethylaminocinnamylidenepyruvate, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), x-Ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability as well as the thermal decomposition of these compounds were studied using an alumina crucible in an air atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state compounds of general formula M(DMCP)2.nH2O, where M represents Mg, Ca, Sr, Ba, and DMCP is 4-dimethylaminocinnamylidenepyruvate, and n = 1, except for Ca, where n = 2.5, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal decomposition of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An evaluation of hydration and thermal decomposition of HAlg and its sodium salt is described using thermogravimetry (TG) and differential scanning calorimetry (DSC). TG curves in N2 and air, were obtained for alginic acid showed two decomposition steps attributed to loss of water and polymer decomposition respectively. The sodium alginate decomposed in three steps. The first attributed to water loss, followed by the formation of a carbonaceous residue and finally the Na2CO3. DSC curves presented peaks in agreement with the TG data. In the IR alginic acid presented bands at 1730 and 1631 cm-1, while sodium alginate presented a doublet at 1614 e 1431 cm-1, evidencing the presence of salified carboxyl groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unprocessed native starches are structurally too weak and functionally too restricted for application in today's advanced food technologies. Processing is necessary to engender a range of functionality. Naturals or natives starches can be modified by using several methods physical, chemical, enzymatic or combined, according industrial purposes. In this work, native corn starch was hydrolyzed by hydrochloric acid solution and investigated by using thermoanalytical techniques (thermogravimetry - TG, differential thermal analysis - DTA and differential scanning calorimetry - DSC), as well as optical microscopy and X-ray diffractometry. After acid treatment at 30 and 50°C, a decrease of gelatinization enthalpy (ΔHgel) was verified. Optical microscopy and X-ray diffractometry allowed us to verify the granules contorn and rugosity typical of cereal starches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkaline earth tricyanomethanides Mg(tcm)(2) center dot 2H(2)O, Ca(tcm)(2), Sr(tcm)(2) - H2O and Ba(tcm)(2) center dot 2H(2)O were prepared from aqueous solutions of the respective chlorides and silver tricyanomethanide. Their IR spectra and thermal behavior are described. The crystal structures of Ca(tcm)(2) and Ba(tcm)(2) center dot 2H(2)O were determined by single crystal X-ray diffraction. The structure of Ca(tcm)(2) is of the type found for several transition metal tricyanomethanides [1], containing two independent interpenetrating networks. Ba(tcm)(2) center dot 2H(2)O has a unique crystal structure corresponding to a three-dimensional coordination polymer with nine fold coordinated Ba atoms connected by water molecules and tricyanomethanide anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition of salbutamol (beta(2) - selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E(act) = 130 kJ mol(-1) (for standard sample) and E(act) = 252 kJ mol(-1) (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min(-1)). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min(-1)). The calculated values were E(act) = 134 kJ mol(-1) (for standard sample) and E(act) (=) 139 kJ mol(-1) (for pharmaceutical sample).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.