989 resultados para Thermal protection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypersonic vehicles represent future trends of military equipments and play an important role in future war. Thermal protection materials and structures, which relate to the safety of hypersonic vehicles, are one of the most key techniques in design and manufacture of hypersonic vehicles. Among these materials and structures, such as metallic temperature protection structure, the temperature ceramics and carbon/carbon composites are usually adopted in design. The recent progresses of research and application of ultra-high temperature materials in preparation, oxidation resistance, mechanical and physical characterization are summarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4A degrees attack angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental research on a 150 kW arc-heated plasma testing facility was conducted. Stable plasma jets with different gas compositions, temperatures and velocities were obtained at chamber pressure between 400 Pa – 100 kPa. Stagnation ablation experiments were conducted on samples of typical super alloys used for thermal protection systems. The microstructure and hardness of alloys before and after ablation were compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applicability of carbon-based foams as an insulating or active cooling material in thermal protection systems (TPSs) of space vehicles is considered using a computer modeling. This study focuses on numerical investigation of the performance of carbon foams for use in TPSs of space vehicles. Two kinds of carbon foams are considered in this study. For active cooling, the carbon foam that has a thermal conductivity of 100 W/m-k is used and for the insulation, the carbon foam having a thermal conductivity of 0.225 W/m-k is used. A 3D geometry is employed to simulate coolant flow and heat transfer through carbon foam model. Gambit has been used to model the 3D geometry and the numerical simulation is carried out in FLUENT. Numerical results from this thesis suggests that the use of CFOAM and HTC carbon foams in TPS's may effectively protect the aluminum structure of the space shuttle during reentry of the space vehicle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cold–formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently an innovative composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of light gauge cold-formed steel frame walls. In this research, finite-element thermal models of both the traditional light gauge cold-formed steel frame wall panels with cavity insulation and the new light gauge cold-formed steel frame composite wall panels were developed to simulate their thermal behaviour under standard and realistic fire conditions. Suitable apparent thermal properties of gypsum plasterboard, insulation materials and steel were proposed and used. The developed models were then validated by comparing their results with available fire test results. This article presents the details of the developed finite-element models of small-scale non-load-bearing light gauge cold-formed steel frame wall panels and the results of the thermal analysis. It has been shown that accurate finite-element models can be used to simulate the thermal behaviour of small-scale light gauge cold-formed steel frame walls with varying configurations of insulations and plasterboards. The numerical results show that the use of cavity insulation was detrimental to the fire rating of light gauge cold-formed steel frame walls, while the use of external insulation offered superior thermal protection to them. The effects of real fire conditions are also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gate driver is an integral part of every power converter, drives the power semiconductor devices and also provides protection for the switches against short-circuit events and over-voltages during shut down. Gate drive card for IGBTs and MOSFETs with basic features can be designed easily by making use of discrete electronic components. Gate driver ICs provides attractive features in a single package, which improves reliability and reduces effort of design engineers. Either case needs one or more isolated power supplies to drive each power semiconductor devices and provide isolation to the control circuitry from the power circuit. The primary emphasis is then to provide simplified and compact isolated power supplies to the gate drive card with the requisite isolation strength and which consumes less space, and for providing thermal protection to the power semiconductor modules for 3-� 3 wire or 4 wire inverters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations of the multi-shock interactions observable around hypersonic vehicles were carried out by solving Navier-Stokes equations with the AUSMPW scheme and the new type of the IV interaction created by two incident shock waves was investigated in detail. Numerical results show that the intersection point of the second incident shock with the bow shock plays important role on the flow pattern, peak pressures and heat fluxes. In the case of two incident shocks interacting with the bow shock at the same position, the much higher peak pressure and more severe heat transfer rate are induced than the classical IV interaction. The phenomenon is referred to as the multi-shock interaction and higher requirements will be imposed on thermal protection systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In hypersonic flight, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling of gas turbine engines, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt-nosed spacecraft flying at Mach number 6.56 and 40 deg angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. The computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In hypersonic flights, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling gas turbine engine, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt nosed spacecraft flying at Mach number 6.56 and 40 degree angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. Computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared each other. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lightning strike is one of the challenges that the aerospace industry is facing in an effort to increase the percentage of composite materials used in aircraft structures. Lightning strike damage is due to high orthotropic electric resistivity of the composite panels, which leads to high thermal loads that cause decomposition of the epoxy and delimitations of the laminates. Yet, experimental testing of lightning strike on aircraft panels is expensive due to the large number of design parameters that can control the inflicted damage. A coupled thermal-electrical finite element analysis is used to investigate the design variables space that can affect lightning strike damage on epoxy/graphite composite panels. The contribution of this study is modeling the composite panels’ material properties as temperature dependent, which was excluded by other researchers. A number of practical solutions to minimize the damage effect are proposed. Two set of experimental results are used to verify the numerical ones. One experimental set for plain composite panel, and second one for composite panels with joints