984 resultados para Thermal Decomposition
Resumo:
A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.
Resumo:
Cellulose acetates with different degrees of substitution (DS, from 0.6 to 1.9) were prepared from previously mercerized linter cellulose, in a homogeneous medium, using N,N-dimethylacetamide/lithium chloride as a solvent system. The influence of different degrees of substitution on the properties of cellulose acetates was investigated using thermogravimetric analyses (TGA). Quantitative methods were applied to the thermogravimetric curves in order to determine the apparent activation energy (Ea) related to the thermal decomposition of untreated and mercerized celluloses and cellulose acetates. Ea values were calculated using Broido's method and considering dynamic conditions. Ea values of 158 and 187 kJ mol-1 were obtained for untreated and mercerized cellulose, respectively. A previous study showed that C6OH is the most reactive site for acetylation, probably due to the steric hindrance of C2 and C3. The C6OH takes part in the first step of cellulose decomposition, leading to the formation of levoglucosan and, when it is changed to C6OCOCH3, the results indicate that the mechanism of thermal decomposition changes to one with a lower Ea. A linear correlation between Ea and the DS of the acetates prepared in the present work was identified.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Carbon-supported catalysts containing platinum and molybdenum oxide are prepared by thermal decomposition of polymeric precursors. The Pt(y)Mo(z)O(x)/C materials are characterized by energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The catalysts present a well-controlled stoichiometry and nanometric particles. Molybdenum is present mainly as the MoO(3) orthorhombic structure, and no Pt alloys are detected. The voltammetric behavior of the electrodes is investigated; a correlation with literature results for PtMo/C catalysts prepared by other methods is established. The formation of soluble species and the aging effect are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The bridged sulphate complex [Pd2 (C²,dmba) (µ-SO4) (SO2)2] has been obtained by reacting a saturated solution of SO2 in methanol and the cyclometallated compound [Pd(C²,N-dmba)(µ-N3)] 2; (dmba = N,N-dimethylbenzylamine), at room temperature for 24 h. Reaction product was characterized by elemental analysis, NMR comprising 13C{¹H} and ¹H nuclei and I.R. spectrum's measurements. Thermal behavior has been investigated and residual products identified by X-ray powder diffraction.
Resumo:
When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II) chelates. Anhydrous copper(II) complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II) and cadmium(II) hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.
Resumo:
Solid state compounds of general formula ML2.nH2O [where M is Mg, Ca, Sr or Ba; L is cinnamate (C6H5 -CH=CH-COO-) and n = 2, 4, 0.8, 3 respectively], have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal stability and thermal decomposition of these compounds.
Resumo:
Heterobimetallic carbonyl compounds of the type [Fe(CO)4(HgX)2] (X= Cl, Br, I), which have metal-metal bonds, have been prepared in order to study their thermal stabilities as a function of the halogen coordinated to mercury atoms. The characterization of the above complexes was carried out by elemental analysis, IR and NMR spectroscopies. Their thermal behaviour has been investigated and the final product was identified by IR spectroscopy and by X-ray powder diffractogram.
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Solid-state Ln-Bz compounds, where Ln stands for trivalent lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetric and differential thermal analysis in a CO2 atmosphere were used to study the thermal decomposition of these compounds.
Resumo:
Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.
Resumo:
This project is focussed on the thermsLl decomposition of t-butyl hydroperoxide and sec-butyl hydroperoxide at 120°C to 160°C in three alcohol solvents. These are methanol, ethajiol and isopropyl alcohol. The aim of the project was to examine the process of induced decomposition. Thermal decomposition of t-hutyl hydroperoxide and sec-butyl hydroperoxide indicate that these reactions have first-order kinetics with activation energies on the order of 20 to 28 K cal/mole, Styrene was used as a free radical trap to inhibit the induced decomposition. The results permitted calculation of how much induced decomposition occurred in its absence. The experimental resvilts indicate that the induced decomposition is important for t-butyl hydroperoxide in alcohol solvents, as shown by both the reaction rate suid product studies. But sec-butyl hydroperoxide results show that the concerted mechanism for the interaction of two sec-butylperoxy radicals occurs in addition to the induced decomposition. Di-sodium E.D,T.A. was added to reduce possible effects of trace transition metal ion .impurities. The result of this experiment were not as expected. The rate of hydroperoxide decomposition was about the same but was zero-order in hydroperoxide concentration.
Resumo:
Kinetics and product studies of the decompositions of allyl-t-butyl peroxide and 3-hydroperoxy- l-propene (allyl hydroperoxide ) in tolune were investigated. Decompositions of allyl-t-butyl peroxide in toluene at 130-1600 followed first order kinetics with an activation energy of 32.8 K.cals/mol and a log A factor of 13.65. The rates of decomposition were lowered in presence of the radical trap~methyl styrene. By the radical trap method, the induced decomposition at 1300 is shown to be 12.5%. From the yield of 4-phenyl-l,2- epoxy butane the major path of induced decomposition is shown to be via an addition mechanism. On the other hand, di-t-butYl peroxyoxalate induced decomposition of this peroxide at 600 proceeded by an abstraction mechanism. Induced decomposition of peroxides and hydroperoxides containing the allyl system is proposed to occur mainly through an addition mechanism at these higher temperatures. Allyl hydroperoxide in toluene at 165-1850 decomposes following 3/2 order kinetics with an Ea of 30.2 K.cals per mole and log A of 10.6. Enormous production of radicals through chain branching may explain these relatively low values of E and log A. The complexity of the reaction is indicated a by the formation of various products of the decomposition. A study of the radical attack of the hydro peroxide at lower temperatures is suggested as a further work to throw more light on the nature of decomposition of this hydroperoxide.
Resumo:
Re~tes artd pJ~oducts of tllerma]. d,ecom.position of sec-butyl peroxide at 110 - 150°C i.n four solvents h,ave been determined. The d,ecompos i tion vJas sb.o\'\Tn to be tlnlmolecl.llar wi tho energies of activation in toluene, benzene, and cyclohexane of 36 .7-+ 1.0, 33.2 +- 1..0, 33.t~) +.. 1.0 I'(:cal/mol respectively. The activation energy of thermal decomposition for the d,et.1terated peroxide was found to be 37.2 4:- 1.0 KC8:1/1TIol in toluene. A.bo1J.t 70 - 80/~ ol~ tJJ.e' pl~od.1..1CtS could, be explained by kn01rJ11 reactions of free allcoxy raclicals J and very littJ...e, i.f allY, disPl"Opox~tiol'lation of tll10 sec-butoxy radica.ls in t116 solvent cage could be detected. The oth,er 20 - 30% of the peroxide yielded H2 and metb.:'ll etb..yl 1{etol1e. Tl1.e yield. o:f H2 "'lIas unafJ:'ected by the nature or the viscosity of the solvent, but H2 was not formed when s-t1U202 lrJaS phctolyzed. in tolttene at 35°C nor 'tl!Jrl.en the peroxide 1;'JaS tl1.ermally o..ecoJnposed. in the gas p11ase. ~pC-Dideutero-~-butYlperoxide was prepared and decomposed in toluene at 110 - 150°C. The yield of D2 was about ·•e1ne same 248 the yield. of I{2 from s-Bu202, bU.t th.e rate of decomposition (at 135°C) 1iJas only 1/1.55 as fast. Ivlecl1.anisms fOl') J:1ydrogen produ.ction are discussed, but none satisfactorily explains all the evidence.
Resumo:
Rates and products have been determined for the thermal decomposition of bis diphenyl methyl peroxide and diphenyl methyl tert* butyl peroxide at 110@~145@C* The decomposition was uniformly unimolecular with activation energies for the bis diphenyl methyl peroxide in tetrachloroethylene* toluene and nitrobenzene 26,6* 28*3f and 27 Kcals/mole respectively. Diphenyl methyl tert* butyl peroxide showed an activation energy of 38*6 Kcals/mole* About 80-90% of the products in the case of diphenyl methyl peroxide could be explained by the concerted process, this coupled with the negative entropies of activation obtained is a conclusive evidence for the reaction adopting a major concerted path* All the products in the case of diphenyl methyl peroxide could be explained by known reactions of alkoxy radicals* About 80-85% of tert butanol and benzophenone formed suggested far greater cage disproportionation than diffusing apart* Rates of bis triphenyl methyl peroxide have been determined in tetrachloroethylene at 100-120@C* The activation energy was found to be 31 Kcals/mole*