890 resultados para Theory of quantized fields


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a nonperturbative study of the (1 + 1)-dimensional massless Thirring model by using path integral methods. The regularization ambiguities - coming from the computation of the fermionic determinant - allow to find new solution types for the model. At quantum level the Ward identity for the 1PI 2-point function for the fermionic current separates such solutions in two phases or sectors, the first one has a local gauge symmetry that is implemented at quantum level and the other one without this symmetry. The symmetric phase is a new solution which is unrelated to the previous studies of the model and, in the nonsymmetric phase there are solutions that for some values of the ambiguity parameter are related to well-known solutions of the model. We construct the Schwinger-Dyson equations and the Ward identities. We make a detailed analysis of their UV divergence structure and, after, we perform a nonperturbative regularization and renormalization of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the regularization ambiguities in an exact renormalized (1 + 1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a generic transfer matrix approach for the description of the interaction of atoms possessing multiple ground state and excited state sublevels with light fields. This model allows us to treat multi-level atoms as classical scatterers in light fields modified by, in principle, arbitrarily complex optical components such as mirrors, resonators, dispersive or dichroic elements, or filters. We verify our formalism for two prototypical sub-Doppler cooling mechanisms and show that it agrees with the standard literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic universes is discussed in the context of f (R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the universe. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less than the spacing between adjacent bound-state resonances, In this approach we neglect fine and hyperfine structures, but consider fully the three-dimensional aspects of the scattering process, up to the partial d wave. We apply the scheme to calculate the S matrix elements up to the second order in the ratio between the Rabi frequency and the laser detuning, We also obtain, fur this simplified multichannel model, the asymmetric line shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic theory. [S1050-2947(98)04902-6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is possible to show that there are three independent families of models describing a massive spin-2 particle via a rank-2 tensor. One of them contains the massive Fierz-Pauli model, the only case described by a symmetric tensor. The three families have different local symmetries in the massless limit and can not be interconnected by any local field redefinition. We show here, however, that they can be related with the help of a decoupled and nondynamic (spectator) field. The spectator field may be either an antisymmetric tensor B μν=-Bνμ, a vector Aμ or a scalar field φ, corresponding to each of the three families. The addition of the extra field allows us to formulate master actions which interpolate between the symmetric Fierz-Pauli theory and the other models. We argue that massive gravity models based on the Fierz-Pauli theory are not expected to be equivalent to possible local self-interacting theories built up on top of the two new families of massive spin-2 models. The approach used here may be useful to investigate dual (nonsymmetric) formulations of higher-spin particles. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charged massive matter fields of spin-0 and spin- 1/2 are quantized in the presence of an external uniform magnetic field in a spatial region bounded by two parallel plates. The most general set of boundary conditions at the plates, that is required by mathematical consistency and the self-adjointness of the Hamiltonian operator, is employed. The vacuum fluctuations of the matter field in the case of the magnetic field orthogonal to the plates are analyzed, and it is shown that the pressure from the vacuum onto the plates is positive and independent of the boundary condition, as well as of the distance between the plates. Possibilities of the detection of this new-type Casimir effect are discussed. Read More: http://www.worldscientific.com/doi/10.1142/S0217732315500996

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory is developed of an electrostatic probe in a fully-ionized plasma in the presence of a strong magnetic field. The ratio of electron Larmor radius to probe transverse dimension is assumed to be small. Poisson's equation, together with kinetic equations for ions and electrons are considered. An asymptotic perturbation method of multiple scales is used by considering the characteristic lengths appearing in the problem. The leading behavior of the solution is found. The results obtained appear to apply to weaker fields also, agreeing with the solutions known in the limit of no magnetic field. The range of potentials for wich results are presented is limited. The basic effects produced by the field are a depletion of the plasma near the probe and a non-monotonic potential surrounding the probe. The ion saturation current is not changed but changes appear in both the floating potential Vf and the slope of the current-voltage diagram at Vf. The transition region extends beyond the space potential Vs,at wich point the current is largely reduced. The diagram does not have an exponential form in this region as commonly assumed. There exists saturation in electron collection. The extent to which the plasma is disturbed is determined. A cylindrical probe has no solution because of a logarithmic singularity at infinity. Extensions of the theory are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creativity plays an increasingly important role in our personal, social, educational, and community lives. For adolescents, creativity can enable self-expression, be a means of pushing boundaries, and assist learning, achievement, and completion of everyday tasks. Moreover, adolescents who demonstrate creativity can potentially enhance their capacity to face unknown future challenges, address mounting social and ecological issues in our global society, and improve their career opportunities and contribution to the economy. For these reasons, creativity is an essential capacity for young people in their present and future, and is highlighted as a priority in current educational policy nationally and internationally. Despite growing recognition of creativity’s importance and attention to creativity in research, the creative experience from the perspectives of the creators themselves and the creativity of adolescents are neglected fields of study. Hence, this research investigated adolescents’ self-reported experiences of creativity to improve understandings of their creative processes and manifestations, and how these can be supported or inhibited. Although some aspects of creativity have been extensively researched, there were no comprehensive, multidisciplinary theoretical frameworks of adolescent creativity to provide a foundation for this study. Therefore, a grounded theory methodology was adopted for the purpose of constructing a new theory to describe and explain adolescents’ creativity in a range of domains. The study’s constructivist-interpretivist perspective viewed the data and findings as interpretations of adolescents’ creative experiences, co-constructed by the participants and the researcher. The research was conducted in two academically selective high schools in Australia: one arts school, and one science, mathematics, and technology school. Twenty adolescent participants (10 from each school) were selected using theoretical sampling. Data were collected via focus groups, individual interviews, an online discussion forum, and email communications. Grounded theory methods informed a process of concurrent data collection and analysis; each iteration of analysis informed subsequent data collection. Findings portray creativity as it was perceived and experienced by participants, presented in a Grounded Theory of Adolescent Creativity. The Grounded Theory of Adolescent Creativity comprises a core category, Perceiving and Pursuing Novelty: Not the Norm, which linked all findings in the study. This core category explains how creativity involved adolescents perceiving stimuli and experiences differently, approaching tasks or life unconventionally, and pursuing novel ideas to create outcomes that are not the norm when compared with outcomes by peers. Elaboration of the core category is provided by the major categories of findings. That is, adolescent creativity entailed utilising a network of Sub-Processes of Creativity, using strategies for Managing Constraints and Challenges, and drawing on different Approaches to Creativity – adaptation, transfer, synthesis, and genesis – to apply the sub-processes and produce creative outcomes. Potentially, there were Effects of Creativity on Creators and Audiences, depending on the adolescent and the task. Three Types of Creativity were identified as the manifestations of the creative process: creative personal expression, creative boundary pushing, and creative task achievement. Interactions among adolescents’ dispositions and environments were influential in their creativity. Patterns and variations of these interactions revealed a framework of four Contexts for Creativity that offered different levels of support for creativity: high creative disposition–supportive environment; high creative disposition–inhibiting environment; low creative disposition–supportive environment; and low creative disposition–inhibiting environment. These contexts represent dimensional ranges of how dispositions and environments supported or inhibited creativity, and reveal that the optimal context for creativity differed depending on the adolescent, task, domain, and environment. This study makes four main contributions, which have methodological and theoretical implications for researchers, as well as practical implications for adolescents, parents, teachers, policy and curriculum developers, and other interested stakeholders who aim to foster the creativity of adolescents. First, this study contributes methodologically through its constructivist-interpretivist grounded theory methodology combining the grounded theory approaches of Corbin and Strauss (2008) and Charmaz (2006). Innovative data collection was also demonstrated through integration of data from online and face-to-face interactions with adolescents, within the grounded theory design. These methodological contributions have broad applicability to researchers examining complex constructs and processes, and with populations who integrate multimedia as a natural form of communication. Second, applicable to creativity in diverse domains, the Grounded Theory of Adolescent Creativity supports a hybrid view of creativity as both domain-general and domain-specific. A third major contribution was identification of a new form of creativity, educational creativity (ed-c), which categorises creativity for learning or achievement within the constraints of formal educational contexts. These theoretical contributions inform further research about creativity in different domains or multidisciplinary areas, and with populations engaged in formal education. However, the key contribution of this research is that it presents an original Theory and Model of Adolescent Creativity to explain the complex, multifaceted phenomenon of adolescents’ creative experiences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) accelerometer using transverse forces is more sensitive than one using axial forces with the same mass of the inertial object, because a barely stretched FBG fixed at its two ends is much more sensitive to transverse forces than axial ones. The spring-mass theory, with the assumption that the axial force changes little during the vibration, cannot accurately predict its sensitivity and resonant frequency in the gravitational direction because the assumption does not hold due to the fact that the FBG is barely prestretched. It was modified but still required experimental verification due to the limitations in the original experiments, such as the (1) friction between the inertial object and shell; (2) errors involved in estimating the time-domain records; (3) limited data; and (4) large interval ∼5 Hz between the tested frequencies in the frequency-response experiments. The experiments presented here have verified the modified theory by overcoming those limitations. On the frequency responses, it is observed that the optimal condition for simultaneously achieving high sensitivity and resonant frequency is at the infinitesimal prestretch. On the sensitivity at the same frequency, the experimental sensitivities of the FBG accelerometer with a 5.71 gram inertial object at 6 Hz (1.29, 1.19, 0.88, 0.64, and 0.31 nm/g at the 0.03, 0.69, 1.41, 1.93, and 3.16 nm prestretches, respectively) agree with the static sensitivities predicted (1.25, 1.14, 0.83, 0.61, and 0.29 nm/g, correspondingly). On the resonant frequency, (1) its assumption that the resonant frequencies in the forced and free vibrations are similar is experimentally verified; (2) its dependence on the distance between the FBG’s fixed ends is examined, showing it to be independent; (3) the predictions of the spring-mass theory and modified theory are compared with the experimental results, showing that the modified theory predicts more accurately. The modified theory can be used more confidently in guiding its design by predicting its static sensitivity and resonant frequency, and may have applications in other fields for the scenario where the spring-mass theory fails.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extension of Hehl's Poincaré gauge theory to more general groups that include space-time diffeomorphisms is worked out for two particular examples, one corresponding to the action of the conformal group on Minkowski space, and the other to the action of the de Sitter group on de Sitter space, and the effect of these groups on physical fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any (N+M)-parameter Lie group G with an N-parameter subgroup H can be realized as a global group of diffeomorphisms on an M-dimensional base space B, with representations in terms of transformation laws of fields on B belonging to linear representations of H. The gauged generalization of the global diffeomorphisms consists of general diffeomorphisms (or coordinate transformations) on a base space together with a local action of H on the fields. The particular applications of the scheme to space-time symmetries is discussed in terms of Lagrangians, field equations, currents, and source identities. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear theory of the instability caused by an electron beam-plasma interaction is studied. A nonlinear analysis has been carried out using many-body methods. A general formula for a neutral collisionless plasma, without external fields, is derived. This could be used for calculating the saturation levels of other instabilities. The effect of orbit perturbation theory on the beam-plasma instability is briefly reviewed.