893 resultados para Theory of Computation
Resumo:
Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA's behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.
Resumo:
This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.
Resumo:
Researchers suggest that personalization on the Semantic Web adds up to a Web 3.0 eventually. In this Web, personalized agents process and thus generate the biggest share of information rather than humans. In the sense of emergent semantics, which supplements traditional formal semantics of the Semantic Web, this is well conceivable. An emergent Semantic Web underlying fuzzy grassroots ontology can be accomplished through inducing knowledge from users' common parlance in mutual Web 2.0 interactions [1]. These ontologies can also be matched against existing Semantic Web ontologies, to create comprehensive top-level ontologies. On the Web, if augmented with information in the form of restrictions andassociated reliability (Z-numbers) [2], this collection of fuzzy ontologies constitutes an important basis for an implementation of Zadeh's restriction-centered theory of reasoning and computation (RRC) [3]. By considering real world's fuzziness, RRC differs from traditional approaches because it can handle restrictions described in natural language. A restriction is an answer to a question of the value of a variable such as the duration of an appointment. In addition to mathematically well-defined answers, RRC can likewise deal with unprecisiated answers as "about one hour." Inspired by mental functions, it constitutes an important basis to leverage present-day Web efforts to a natural Web 3.0. Based on natural language information, RRC may be accomplished with Z-number calculation to achieve a personalized Web reasoning and computation. Finally, through Web agents' understanding of natural language, they can react to humans more intuitively and thus generate and process information.
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
Computation of the dependency basis is the fundamental step in solving the membership problem for functional dependencies (FDs) and multivalued dependencies (MVDs) in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of a dependency-lattice and develop an algebraic characterization of inference basis using simple notions from lattice theory. We also establish several interesting properties of dependency-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a): computing the inference basis of a given set M of MVDs; (b): computing the dependency basis of a given attribute set w.r.t. M; and (c): solving the membership problem for MVDs. We also show that our results naturally extend to incorporate FDs also in a way that enables the solution of the membership problem for both FDs and MVDs put together. We finally show that our algorithms are more efficient than existing ones, when used to solve what we term the ‘generalized membership problem’.
Resumo:
We develop a group-theoretical analysis of slow feature analysis for the case where the input data are generated by applying a set of continuous transformations to static templates. As an application of the theory, we analytically derive nonlinear visual receptive fields and show that their optimal stimuli, as well as the orientation and frequency tuning, are in good agreement with previous simulations of complex cells in primary visual cortex (Berkes and Wiskott, 2005). The theory suggests that side and end stopping can be interpreted as a weak breaking of translation invariance. Direction selectivity is also discussed. © 2011 Massachusetts Institute of Technology.
Resumo:
In practical situations, the causes of image blurring are often undiscovered or difficult to get known. However, traditional methods usually assume the knowledge of the blur has been known prior to the restoring process, which are not practicable for blind image restoration. A new method proposed in this paper aims exactly at blind image restoration. The restoration process is transformed into a problem of point distribution analysis in high-dimensional space. Experiments have proved that the restoration could be achieved using this method without re-knowledge of the image blur. In addition, the algorithm guarantees to be convergent and has simple computation.
Resumo:
Based on a multiparticle-state stimulated Raman adiabatic passage approach, a comprehensive theoretical study of the ultrafast optical manipulation of electron spins in quantum wells is presented. In addition to corroborating experimental findings [Gupta , Science 292, 2458 (2001)], we improve the expression for the optical-pulse-induced effective magnetic field, in comparison with the one obtained via the conventional single-particle ac Stark shift. Further study of the effect of hole-spin relaxation reveals that, while the coherent optical manipulation of electron spin in undoped quantum wells would deteriorate in the presence of relatively fast hole-spin relaxation, the coherent control in doped systems can be quite robust against decoherence. The implications of the present results on quantum dots will also be discussed. (c) 2005 American Institute of Physics.
Resumo:
I wish to propose a quite speculative new version of the grandmother cell theory to explain how the brain, or parts of it, may work. In particular, I discuss how the visual system may learn to recognize 3D objects. The model would apply directly to the cortical cells involved in visual face recognition. I will also outline the relation of our theory to existing models of the cerebellum and of motor control. Specific biophysical mechanisms can be readily suggested as part of a basic type of neural circuitry that can learn to approximate multidimensional input-output mappings from sets of examples and that is expected to be replicated in different regions of the brain and across modalities. The main points of the theory are: -the brain uses modules for multivariate function approximation as basic components of several of its information processing subsystems. -these modules are realized as HyperBF networks (Poggio and Girosi, 1990a,b). -HyperBF networks can be implemented in terms of biologically plausible mechanisms and circuitry. The theory predicts a specific type of population coding that represents an extension of schemes such as look-up tables. I will conclude with some speculations about the trade-off between memory and computation and the evolution of intelligence.
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Employee Readiness For Change : Utilizing The Theory Of Planned Behavior To Inform Change Management