908 resultados para The green pigmentation mutant
Resumo:
The free living conchocelis of Porphyra yezoensis Ueda was treated with N-methyl-N-nitro-N-nitrosoguanidine to induce pigmentation mutants. The artificial green pigmentation mutant of P. yezoensis conchocelis, which was composed entirely of green cells, was isolated through visualization with the unaided eye. The acquired green conchocelis was further developed into a green gametophytic blade. This mutant was relatively stable in color in both gametophytic blade and conchocelis phases. The gametophytic blade mutant was successively cultivated for commerce at some Porphyra farms in Rudong, China, and few wild type or sectorially variegated gametophytic blade occurred, indicating that the green mutant has commercial value. The green mutant was characterized as having lower phycoerythrin and higher phycocyanin content, and SDS-PAGE suggested that phycoerythrin was missing the gamma-subunit in comparison to the wild type. The wild type and the green mutant showed a clear difference in 02 evolution rates in white, green, yellow, and red light, which might be due to the qualitative and quantitative changes of phycoerythrin, and the quantitative difference of phycocyanin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.
Resumo:
The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.
Resumo:
We have developed improved procedures for the isolation of deletion mutant, point mutant, and recombinant herpesvirus saimiri. These procedures take advantage of the absence of NotI and AscI restriction enzyme sites within the viral genome and use reporter genes for the identification of recombinant viruses. Genes for secreted engineered alkaline phosphatase and green fluorescent protein were placed under simian virus 40 early promoter control and flanked by NotI and AscI restriction sites. When permissive cells were cotransfected with herpesvirus saimiri virion DNA and one of the engineered reporter genes cloned within herpesvirus saimiri sequences, recombinant viruses were readily identified and purified on the basis of expression of the reporter gene. Digestion of recombinant virion DNA with NotI or AscI was used to delete the reporter gene from the recombinant herpesvirus saimiri. Replacement of the reporter gene can be achieved by NotI or AscI digestion of virion DNA and ligation with a terminally matched fragment or, alternatively, by homologous recombination in cotransfected cells. Any gene can, in theory, be cloned directly into the virion DNA when flanked by the appropriate NotI or AscI sites. These procedures should be widely applicable in their general form to most or all herpesviruses that replicate permissively in cultured cells.
Resumo:
In recent months the extremes of Australia’s weather have affected, killed a good number of people and millions of dollars lost. Contrary to a manned aircraft or a helicopter; which have restricted air time, a UAS or a group of UAS could provide 24 hours coverage of the disaster area and be instrumented with infrared cameras to locate distressed people and relay information to emergency services. The solar powered UAV is capable of carrying a 0.25Kg payload consuming 0.5 watt and fly continuously for at low altitude for 24 hrs ,collect the data and create a special distribution . This system, named Green Falcon, is fully autonomous in navigation and power generation, equipped with solar cells covering its wing, it retrieves energy from the sun in order to supply power to the propulsion system and the control electronics, and charge the battery with the surplus of energy. During the night, the only energy available comes from the battery, which discharges slowly until the next morning when a new cycle starts. The prototype airplane was exhibited at the Melbourne Museum form Nov09 to Feb 2010.
Resumo:
The problem of greenwashing requires a robust, integrated approach to law reform to discourage a practice that drowns out the legitimate voices.
Resumo:
The Rio+20 summit has raised a number of difficult questions about law and technology: what is the relationship between intellectual property and the environment? What role does intellectual property play in sustainable development? Who will own and control the Green Economy? What is the best way to encourage the transfer of environmentally sound technologies? Should intellectual property provide incentives for fossil fuels? What are the respective roles of the public sector and the private sector in green innovation? How should biodiversity, traditional knowledge and Indigenous intellectual property be protected?
Resumo:
Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic conditions in the northern and southern Mozambique Channel that influence early stages in the green turtle life cycle.
Resumo:
There has recently been a rapidly increasing interest in solar powered UAVs. With the emergence of high power density batteries, long range and low-power micro radio devices, airframes, and powerful micro-processors and motors, small/micro UAVs have become applicable in civilian applications such as remote sensing, mapping, traffic monitoring, search and rescue. The Green Falcon UAV is an innovative project from Queensland University of Technology and has been developed and tested during these past years. It comprises a wide range of subsystems to be analyses and studied such as Solar Panel Cells, Gas sensor, Aerodynamics of the wing and others. Previous test however, resulted in damage to the solar cells and some of the subsystems including motor and ESC. This report describes the repair and verification process followed to improve the efficiency of the Green Falcon UAV. The report shows some of the results obtained in previous static and flight tests as well as some of recommendations.
Resumo:
The blue emission of ethyl-hexyl substituted polyfluorene (PF2/6) films is accompanied by a low energy green emission peak around 500 nm in inert atmosphere. The intensity of this 500 nm peak is large in electroluminescence (EL) compared to photoluminescence (PL)measurements. Furthermore, the green emission intensity reduces dramatically in the presence of molecular oxygen. To understand this, we have modeled various nonradiative processes by time dependent quantum many body methods. These are (i) intersystem crossing to study conversion of excited singlets to triplets leading to a phosphorescence emission, (ii) electron-hole recombination (e-hR) process in the presence of a paramagnetic impurity to follow the yield of triplets in a polyene system doped with paramagnetic metal atom, and (iii) quenching of excited triplet states in the presence of oxygen molecules to understand the low intensity of EL emission in ambient atmosphere, when compared with that in nitrogen atmosphere. We have employed the Pariser-Parr-Pople Hamiltonian to model the molecules and have invoked electron-electron repulsions beyond zero differential approximation while treating interactions between the organic molecule and the rest of the system. Our time evolution methods show that there is a large cross section for triplet formation in the e-hR process in the presence of paramagnetic impurity with degenerate orbitals. The triplet yield through e-hR process far exceeds that in the intersystem crossing pathway, clearly pointing to the large intensity of the 500 nm peak in EL compared to PL measurements. We have also modeled the triplet quenching process by a paramagnetic oxygen molecule which shows a sizable quenching cross section especially for systems with large sizes. These studies show that the most probable origin of the experimentally observed low energy EL emission is the triplets.
Resumo:
The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose alpha- and epsilon-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-l and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity.
Resumo:
Tässä tutkielmassa tarkastellaan Bolivialaisten naisvankien (alkuperäisväestön) ja globaalin huumesodan ("War on Drugs") välistä yhteyttä. Keskustelu sijoitetaan laajemmin kokan viljelyn politiikkaan ja alkuperäisväestön kulttuuriin. Kokaa viljeleviä köyhiä maalaisia, joista huomattava osa on naisia, on vangittu Boliviassa kiihtyvää tahtia viime vuosikymmeninä. Moni naisista on kokan tuotannossa ja kaupassa mukana, sillä se on monesti ainoa keino taloudelliseen selviämiseen. Yleisesti ottaen naisvangit ja naisrikolliset ovat marginaalinen ilmiö. Kansainvälisesti tarkasteltuna naisvankien suhteellinen osuus koko vankilaväestöstä on noin 5,2 % (keskiarvo). Boliviassa osuus on vaihdellut 6,1 %:n ja 17,1 %:n välillä vuosina 2000-2008. Naisvankien määrä yleisesti ottaen on ollut rajussa kasvussa, suurin syy naisten vangitsemiseen on huumausaineisiin liittyvät rikokset. Näyttää myös siltä että vähemmistöt ja etnisen taustan omaavat henkilöt ovat yliedustettuina vankilaväestössä. Bolivia seuraa tätä kansainvälistä trendiä. Tämä tutkielma on rajattu kysymyksiin Bolivian intiaaniperäisten naisten osuudesta maan huumerikollisuudessa, sekä heidän suhteellisen korkeaa vangitsemisastetta selittäviin yhteiskunnallisiin tekijöihin. Kysymykset sukupuolesta, etnisyydestä ja kokan viljelyn politiikasta ovat keskiössä. Yleisiä kriminologisia teorioita peilataan kriittisesti suhteessa aineistoon ja Bolivian kontekstiin. Huumesodan ja Bolivian ankaran huumelainsäädännön seurauksista keskustellaan kriittisesti, sekä pohditaan köyhän alkuperäisväestön massavangitsemisen tarpeellisuutta. Tutkimuskysymykseni ovat: mitkä tekijät selittävät kohtuullisen korkean intiaaniperäisten naisvankien määrän Boliviassa, ja mikä on heidän asemansa globaalissa huumesodassa? Tutkielmassa on analysoitu kvantitatiivista ja kvalitatiivista aineistoa. Päälähteenä on ollut Bolivian tilastokeskuksen tuottamat rikostilastot. Tutkielman tärkeimpänä löydöksenä voidaan pitää havaintoa, että vastoin tiettyjä olettamuksia, intiaaniperäiset naiset ovat hyvinkin aktiivisia perinteisesti miehisiksi käsitetyillä aloilla kuten rikollisuudessa ja politiikassa. Tutkielmassa osoitetaan myös, että pidätysten määrät ovat moninkertaistuneet muutamassa vuosikymmenessä. Koska kokan viljelyssä on kyse pääasiallisesti taloudellisesta toimeentulosta, tämä tutkielma kysyy, onko hengissä pysyminen rikos?
Resumo:
Crystal structures of the active-site mutants D99A and H48Q and the calcium-loop mutant D49E of bovine phospholipase A(2) have been determined at around 1.9 Angstrom resolution. The D99A mutant is isomorphous to the orthorhombic recombinant enzyme, space group P2(1)2(1)2(1), The H48Q and the calcium-loop mutant D49E are isomorphous to the trigonal recombinant enzyme, space group P3(1)21, The two active-site mutants show no major structural perturbations. The structural water is absent in D99A and, therefore, the hydrogen-bonding scheme is changed. In H48Q, the catalytic water is present and hydrogen bonded to Gln48 N, but the second water found in native His48 is absent. In the calcium-loop mutant D49E, the two water molecules forming the pentagonal bipyramid around calcium are absent and only one O atom of the Glu49 carboxylate group is coordinated to calcium, resulting in only four ligands.