953 resultados para The brain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When we attempt to speak about the relationship between language, literacy, and the brain, we find ourselves ill equipped to deal with these conceptually and qualitatively different phenomena. Immediately we must straddle different academic traditions that treat each of these as separate “things”. Broadly speaking, the study of language firstly belongs to the domain of biology, then to anthropology, sociology, and linguistics. At its most functional, a study of literacy education is a study of a particular technology, its diffusion techniques, and the abilities and motivations of people to adopt, or adapt themselves to, this technology. The brain is most commonly studied in the field of neurology, which is also a sub-discipline of biology, biochemistry, and medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Appetite regulation is highly complex and involves a large number of orexigenic and anorexigenic peptide hormones. These are small, processed, secreted peptides derived from larger prepropeptide precursors. These peptides are important targets for the development of therapeutics for obesity, a global health epidemic. As a case study, we consider the ghrelin axis. The ghrelin axis is likely to be a particularly useful drug target, as it also plays a role in energy homeostasis, adipogenesis, insulin regulation and reward associated with food intake. Ghrelin is the only known circulating gut orexigenic peptide hormone. As it appears to play a role in diet-induced obesity, blocking the action of ghrelin is likely to be effective for treating and preventing obesity. The ghrelin peptide has been targeted using a number of approaches, with ghrelin mirror-image oligonucleotides (Spiegelmers) and immunotherapy showing some promise. The ghrelin receptor, the growth hormone secretagogue receptor, may also provide a useful target and a number of antagonists and inverse agonists have been developed. A particularly promising new target is the enzyme which octanoylates ghrelin, ghrelin O-acyltransferase (GOAT), and drugs that inhibit GOAT are likely to circumvent pharmacological issues associated with approaches that directly target ghrelin or its receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs are small non-coding RNAs that mediate post-transcriptional gene silencing. Fear-extinction learning in C57/Bl6J mice led to increased expression of the brain-specific microRNA miR-128b, which disrupted stability of several plasticity-related target genes and regulated formation of fear-extinction memory. Increased miR-128b activity may therefore facilitate the transition from retrieval of the original fear memory toward the formation of a new fear-extinction memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What helps us determine whether a word is a noun or a verb, without conscious awareness? We report on cues in the way individual English words are spelled, and, for the first time, identify their neural correlates via functional magnetic resonance imaging (fMRI). We used a lexical decision task with trisyllabic nouns and verbs containing orthographic cues that are either consistent or inconsistent with the spelling patterns of words from that grammatical category. Significant linear increases in response times and error rates were observed as orthography became less consistent, paralleled by significant linear decreases in blood oxygen level dependent (BOLD) signal in the left supramarginal gyrus of the left inferior parietal lobule, a brain region implicated in visual word recognition. A similar pattern was observed in the left superior parietal lobule. These findings align with an emergentist view of grammatical category processing which results from sensitivity to multiple probabilistic cues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a shape-space approach for analyzing genetic influences on the shapes of the sulcal folding patterns on the cortex. Sulci are represented as continuously parameterized functions in a shape space, and shape differences between sulci are obtained via geodesics between them. The resulting statistical shape analysis framework is used not only to construct populations averages, but also used to compute meaningful correlations within and across groups of sulcal shapes. More importantly, we present a new algorithm that extends the traditional Euclidean estimate of the intra-class correlation to the geometric shape space, thereby allowing us to study heritability of sulcal shape traits for a population of 193 twin pairs. This new methodology reveals strong genetic influences on the sulcal geometry of the cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within central nervous system, the simple division of chemical synaptic transmission to depolarizing excitation mediated by glutamate and hyperpolarizing inhibition mediated by γ-amino butyric acid (GABA), is evidently an oversimplification. The GABAa receptor (GABAaR) mediated responses can be of opposite sign within a single resting cell, due to the compartmentalized distribution of cation chloride cotransporters (CCCs). The K+/Cl- cotransporter 2 (KCC2), member of the CCC family, promotes K+ fuelled Cl- extrusion and sets the reversal potential of GABA evoked anion currents typically slightly below the resting membrane potential. The interesting ionic plasticity property of GABAergic signalling emerges from the short-term and long-term alterations in the intraneuronal concentrations of GABAaR permeable anions (Cl- and HCO3-). The short-term effects arise rapidly (in the time scale of hundreds of milliseconds) and are due to the GABAaR activation dependent shifts in anion gradients, whereas the changes in expression, distribution and kinetic regulation of CCCs are underlying the long-term effects, which may take minutes or even hours to develop. In this Thesis, the differences in the reversal potential of GABAaR mediated responses between dopaminergic and GABAergic cell types, located in the substantia nigra, were shown to be attributable to the differences in the chloride extrusion mechanisms. The stronger inhibitory effect of GABA on GABAergic neurons was due to the cell type specific expression of KCC2 whereas the KCC2 was absent from dopaminergic neurons, leading to a less prominent inhibition brought by GABAaR activation. The levels of KCC2 protein exhibited activity dependent alterations in hippocampal pyramidal neurons. Intense neuronal activity, leading to a massive release of brain derived neurotrophic factor (BDNF) in vivo, or applications of tyrosine receptor kinase B (TrkB) agonists BDNF or neurotrophin-4 in vitro, were shown to down-regulate KCC2 protein levels which led to a reduction in the efficacy of Cl- extrusion. The GABAergic transmission is interestingly involved in an increase of extracellular K+ concentration. A substantial increase in interstitial K+ tends to depolarize the cell membrane. The effects that varying ion gradients had on the generation of biphasic GABAaR mediated responses were addressed, with particular emphasis on the novel idea that the K+/Cl- extrusion via KCC2 is accelerated in response to a rapid accumulation of intracellular Cl-. The KCC2 inhibitor furosemide produced a large reduction in the GABAaR dependent extracellular K+ transients. Thus, paradoxically, both the inefficient KCC2 activity (via increased intracellular Cl-) and efficient KCC2 activity (via increased extracellular K+) may promote excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals in distress emit audible vocalizations to either warn or inform conspecifics. The Indian short-nosed fruit bat, Cynopterus sphinx, emits distress calls soon after becoming entangled in mist nets, which appear to attract conspecifics. Phase I of these distress calls is longer and louder, and includes a secondary peak, compared to phase II. Activity-dependent expression of egr-1 was examined in free-ranging C. sphinx following the emissions and responses to a distress call. We found that the level of expression of egr-1 was higher in bats that emitted a distress call, in adults that responded, and in pups than in silent bats. Up-regulated cDNA was amplified to identify the target gene (TOE1) of the protein Egr-1. The observed expression pattern Toe1 was similar to that of egr-1. These findings suggest that the neuronal activity related to recognition of a distress call and an auditory feedback mechanism induces the expression of Egr-1. Co-expression of egr-1 with Toe1 may play a role in initial triggering of the genetic mechanism that could be involved in the consolidation or stabilization of distress call memories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurotransmitter serotonin (5-HT) modulates many functions important for life, e.g., appetite and body temperature, and controls development of the neural system. Disturbed 5-HT function has been implicated in mood, anxiety and eating disorders. The serotonin transporter (SERT) controls the amount of effective 5-HT by removing it from the extracellular space. Radionuclide imaging methods single photon emission tomography (SPET) and positron emission tomography (PET) enable studies on the brain SERTs. This thesis concentrated on both methodological and clinical aspects of the brain SERT imaging using SPET. The first study compared the repeatability of automated and manual methods for definition of volumes of interest (VOIs) in SERT images. The second study investigated within-subject seasonal variation of SERT binding in healthy young adults in two brain regions, the midbrain and thalamus. The third study investigated the association of the midbrain and thalamic SERT binding with Bulimia Nervosa (BN) in female twins. The fourth study investigated the association of the midbrain and hypothalamic/thalamic SERT binding and body mass index (BMI) in monozygotic (MZ) twin pairs. Two radioligands for SERT imaging were used: [123I]ADAM (studies I-III) and [123I]nor-beta-CIT (study IV). Study subjects included young adult MZ and dizygotic (DZ) twins screened from the FinnTwin16 twin cohort (studies I-IV) and healthy young adult men recruited for study II. The first study validated the use of an automated brain template in the analyses of [123I]ADAM images and proved automated VOI definition more reproducible than manual VOI definition. The second study found no systematic within-subject variation in SERT binding between scans done in summer and winter in either of the investigated brain regions. The third study found similar SERT binding between BN women (including purging and non-purging probands), their unaffected female co-twins and other healthy women in both brain regions; in post hoc analyses, a subgroup of purging BN women had significantly higher SERT binding in the midbrain as compared to all healthy women. In the fourth study, MZ twin pairs were divided into twins with higher BMI and co-twins with lower BMI; twins with higher BMI were found to have higher SERT binding in the hypothalamus/thalamus than their leaner co-twins. Our results allow the following conclusions: 1) No systematic seasonal variation exists in the midbrain and thalamus between SERT binding in summer and winter. 2) In a population-based sample, BN does not associate with altered SERT status, but alterations are possible in purging BN women. 3) The higher SERT binding in MZ twins with higher BMIs as compared to their leaner co-twins suggests non-genetic association between acquired obesity and the brain 5-HT system, which may have implications on feeding behavior and satiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carotid atherosclerotic disease is a major cause of stroke, but it may remain clinically asymptomatic. The factors that turn the asymptomatic plaque into a symptomatic one are not fully understood, neither are the subtle effects that a high-grade carotid stenosis may have on the brain. The purpose of this study was to evaluate brain microcirculation, diffusion, and cognitive performance in patients with a high-grade stenosis in carotid artery, clinically either symptomatic or asymptomatic, undergoing carotid endarterectomy (CEA). We wanted to find out whether the stenoses are associated with diffusion or perfusion abnormalities of the brain or variation in the cognitive functioning of the patients, and to what extent the potential findings are affected by CEA, and compare the clinically symptomatic and asymptomatic subjects as well as strictly healthy controls. Coagulation and fibrinolytic parameters were compared with the rate microembolic signals (MES) in transcranial Doppler (TCD) and the macroscopic appearance of stenosing plaques in surgery. Patients (n=92) underwent CEA within the study. Blood samples pertaining to coagulation and fibrinolysis were collected before CEA, and the subjects underwent repeated TCD monitoring for MES. A subpopulation (n= 46) underwent MR imaging and repeated neuropsychological examination (preoperative, as well 4 and 100 days after CEA). In MRI, the average apparent diffusion coefficients were higher in the ipsilateral white matter (WM), and altough the interhemispheric difference was abolished by CEA, the levels remained higher than in controls. Symptomatic stenoses were associated with more sluggish perfusion especially in WM, and lower pulsatility of flow in TCD. All patients had poorer cognitive performance than healthy controls. Cognitive functions improved as expected by learning effect despite transient postoperative worsening in a few subjects. Improvement was greater in patients with deepest hypoperfusion, primarily in executive functions. Symptomatic stenoses were associated with higher hematocrit and tissue plasminogen activator antigen levels, as well as higher rate of MES and ulcerated plaques, and better postoperative improvement of vasoreactivity and pulsatility. In light of the findings, carotid stenosis is associated with differences in brain diffusion, perfusion, and cognition. The effect on diffusion in the ipsilateral WM, partially reversible by CEA, may be associated with WM degeneration. Asymptomatic and symptomatic subpopulations differ from each other in terms of hemodynamic adaptation and in their vascular physiological response to removal of stenosis. Although CEA may be associated with a transient cognitive decline, a true improvement of cognitive performance by CEA is possible in patients with the most pronounced perfusion deficits. Mediators of fibrinolysis and unfavourable hemorheology may contribute to the development of a symptomatic disease in patients with a high-grade stenosis.