698 resultados para Thaliana
Resumo:
Background: Protein-protein interactions (PPIs) constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description: All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C(3)) which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW) calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS) (AT5G26710) we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630), a disease resistance protein (AT3G50950) and a zinc finger protein (AT5G24930), which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions: AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.
Resumo:
Prohormone proteins in animals and yeast are typically processed at dibasic sites by convertases. Propeptide hormones are also found in plants but little is known about processing. We show for the first time that a dibasic site upstream of a plant peptide hormone, AtRALF1, is essential for processing. Overexpression of preproAtRALF1 causes semidwarfism whereas overexpression of preproAtRALF1(R69A), the propeptide with a mutation in the dibasic site, shows a normal phenotype. RALF1(R69A) plants accumulate only the mutated proprotein and not the processed peptide. In vitro processing using microsomal fractions suggests that processing is carried out by a kexin-like convertase. (C) 2008 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
Aminoacyl-transfer RNA (tRNA) synthetases (aaRS) are key players in translation and act early in protein synthesis by mediating the attachment of amino acids to their cognate tRNA molecules. In plants, protein synthesis may occur in three subcellular compartments (cytosol, mitochondria, and chloroplasts), which requires multiple versions of the protein to be correctly delivered to its proper destination. The organellar aaRS are nuclear encoded and equipped with targeting information at the N-terminal sequence, which enables them to be specifically translocated to their final location. Most of the aaRS families present organellar proteins that are dual targeted to mitochondria and chloroplasts. Here, we examine the dual targeting behavior of aaRS from an evolutionary perspective. Our results show that Arabidopsis thaliana aaRS sequences are a result of a horizontal gene transfer event from bacteria. However, there is no evident bias indicating one single ancestor (Cyanobacteria or Proteobacteria). The dual-targeted aaRS phylogenetic relationship was characterized into two different categories (paralogs and homologs) depending on the state recovered for both dual-targeted and cytosolic proteins. Taken together, our results suggest that the dual-targeted condition is a gain-of-function derived from gene duplication. Selection may have maintained the original function in at least one of the copies as the additional copies diverged.
Resumo:
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coil, and purified the AHAS regulatory subunit of Ambidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.
Resumo:
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.
Resumo:
There is increasing evidence that heterotrimeric G-proteins (G-proteins) are involved in many plant processes including phytohormone response, pathogen defence and stomatal control. In animal systems, each of the three G-protein subunits belong to large multigene families; however, few subunits have been isolated from plants. Here we report the cloning of a second plant G-protein γ-subunit (AGG2) from Arabidopsis thaliana. The predicted AGG2 protein sequence shows 48% identity to the first identified Arabidopsis Gγ-subunit, AGG1. Furthermore, AGG2 contains all of the conserved characteristics of γ-subunits including a small size (100 amino acids, 11.1 kDa), C-terminal CAAX box and a N-terminal α-helix region capable of forming a coiled-coil interaction with the β-subunit. A strong interaction between AGG2 and both the tobacco (TGB1) and Arabidopsis (AGB1) β-subunits was observed in vivo using the yeast two-hybrid system. The strong association between AGG2 and AGB1 was confirmed in vitro. Southern and Northern analyses showed that AGG2 is a single copy gene in Arabidopsis producing two transcripts that are present in all tissues tested. The isolation of a second γ-subunit from A. thaliana indicates that plant G-proteins, like their mammalian counterparts, may form different heterotrimer combinations that presumably regulate multiple signal transduction pathways.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested preciously that one repeat binds leucine while the second binds valine or isoleucine, with synergy between the two sites. We have mutated four residues in each repeat, based on a model of the regulatory subunit. The data confirm that there are separate leucine and valine/isoleucine sites, and suggest a complex pathway for regulatory signal transmission to the catalytic subunit. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Humic substances isolated from soil organic matter had been used as stimulators of plant metabolism. Arabidopsis thaliana (L.) Heynh. with only five chromosomes, short cycle and size, is an important model to evaluate the physiological effects of these substances, which are qualitatively and quantitatively influenced by morphogenesis, mineralogy and chemistry of soils. The objective of this study was to evaluate the ambience effects on bioactivity of humic acids. A and B horizons of four typical soils of the North Fluminense were sampled. After isolation and purification, humic acids were applied to plants in increasing concentrations. The number and length of lateral roots and main root length were evaluated and, subsequently, the concentrations of maximum stimulation were determined by dose-response curves and regression equations. The results showed that more stable humic acids isolated from soil in less advanced stages of weathering, high activity clay and high base saturation resulted in better physiological stimulants for Arabidopsis.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Biology
Resumo:
The plant cell wall is a strong fibrillar network that gives each cell its stable shape. It is constituted by a network of cellulose microfibrils embedded in a matrix of polysaccharides, such as xyloglucans. To enlarge, cells selectively loosen this network. Moreover, there is a pectin-rich intercellular material, the middle lamella, cementing together the walls of adjacent plant cells. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of enzymes involved in the reorganisation of the cellulose-xyloglucan framework by catalysing cleavage and re-ligation of the xyloglucan chains in the plant cell wall, and are considered cell wall loosening agents. In the laboratory, it has been isolated and characterised a XTH gene, ZmXTH1, from an elongation root cDNA library of maize. To address the cellular function of ZmXTH1, transgenic Arabidopsis thaliana plants over-expressing ZmXTH1 (under the control of the CaMV35S promoter) were generated. The aim of the work performed was therefore the characterisation of these transgenic plants at the ultrastructural level, by transmission electron microscopy (TEM).The detailed cellular phenotype of transgenic plants was investigated by comparing ultra-thin transverse sections of basal stem of 5-weeks old plants of wild type (Col 0) and 35S-ZmXTH1 Arabidopsis plants. Transgenic plants show modifications in the cell walls, particularly a thicker middle lamella layer with respect the wild type plants, supporting the idea that the overexpression of ZmXTH1 could imply a pronounced wall-loosening. In sum, the work carried out reinforces the idea that ZmXTH1 is involved in the cell wall loosening process in maize.
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.
Resumo:
Estudi realitzat a partir d’una estada al Max Planck Institute for Plant Breeding Research, a Alemanya, entre 2006 i 2008. En aquest treball s´ha identificat una nove interacció epistàtica entre l'ecotip Landsberg, originari d'Europa del nord, i Kashmir-2 o Kondara, ambdós originaris d'Àsia Central. Els anàlisi de QTLs en poblacions recombinants Ler x Kas-2 i Ler x Kond indica el requeriment de 3 loci en Ler x Kas-2 i 2 loci en Ler x Kond. Els híbrids incompatibles crescuts a temperatures baixes (16°C) mostren seriosos defectes en el desenvolupament, mort cel.lular espontània i resistència a Hyaloperonospora parasitica. Aquests fenotips es suprimeixen a elevades temperatures o per mutació d'EDS1, o depleció dels nivells d'àcid sal.licílic per transformació amb salicil.lat hidroxilasa (NahG). El grau de severitat en els fenotips observats correlaciona amb els nivells d'àcid sal.licílic, indicant que aquesta molècula és essencial per a la senyalització d'incompatibilitats genètiques en Arabidopsis.
Resumo:
In many organisms, individuals behave more altruistically towards relatives than towards unrelated individuals. Here, we conducted a study to determine if the performance of Arabidopsis thaliana is influenced by whether individuals are in competition with kin or non-kin. We selected seven pairs of genetically distinct accessions that originated from local populations throughout Europe. We measured the biomass of one focal plant surrounded by six kin or non-kin neighbours in in vitro growth experiments and counted the number of siliques produced per pot by one focal plant surrounded by four kin or non-kin neighbours. The biomass and number of siliques of a focal plant were not affected by the relatedness of the neighbour. Depending on the accession, a plant performed better or worse in a pure stand than when surrounded by non-kin plants. In addition, whole-genome microarray analyses revealed that there were no genes differentially expressed between kin and non-kin conditions. In conclusion, our study does not provide any evidence for a differential response to kin vs non-kin in A. thaliana. Rather, the outcome of the interaction between kin and non-kin seems to depend on the strength of the competitive abilities of the accessions.