955 resultados para Théorie des points critiques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Une nouvelle notion d'enlacement pour les paires d'ensembles $A\subset B$, $P\subset Q$ dans un espace de Hilbert de type $X=Y\oplus Y^{\perp}$ avec $Y$ séparable, appellée $\tau$-enlacement, est définie. Le modèle pour cette définition est la généralisation de l'enlacement homotopique et de l'enlacement au sens de Benci-Rabinowitz faite par Frigon. En utilisant la théorie du degré développée dans un article de Kryszewski et Szulkin, plusieurs exemples de paires $\tau$-enlacées sont donnés. Un lemme de déformation est établi et utilisé conjointement à la notion de $\tau$-enlacement pour prouver un théorème d'existence de point critique pour une certaine classe de fonctionnelles sur $X$. De plus, une caractérisation de type minimax de la valeur critique correspondante est donnée. Comme corollaire de ce théorème, des conditions sont énoncées sous lesquelles l'existence de deux points critiques distincts est garantie. Deux autres théorèmes de point critiques sont démontrés dont l'un généralise le théorème principal de l'article de Kryszewski et Szulkin mentionné ci-haut.