905 resultados para Text categorisation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Text categorisation is challenging, due to the complex structure with heterogeneous, changing topics in documents. The performance of text categorisation relies on the quality of samples, effectiveness of document features, and the topic coverage of categories, depending on the employing strategies; supervised or unsupervised; single labelled or multi-labelled. Attempting to deal with these reliability issues in text categorisation, we propose an unsupervised multi-labelled text categorisation approach that maps the local knowledge in documents to global knowledge in a world ontology to optimise categorisation result. The conceptual framework of the approach consists of three modules; pattern mining for feature extraction; feature-subject mapping for categorisation; concept generalisation for optimised categorisation. The approach has been promisingly evaluated by compared with typical text categorisation methods, based on the ground truth encoded by human experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines manual textual categorisation by human coders with the hypothesis that the law of total probability may be violated for difficult categories. An empirical evaluation was conducted to compare a one step categorisation task with a two step categorisation task using crowdsourcing. It was found that the law of total probability was violated. Both a quantum and classical probabilistic interpretations for this violation are presented. Further studies are required to resolve whether quantum models are more appropriate for this task.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents a detailed contrastive description of the textual functioning of connectives in English and Arabic. Particular emphasis is placed on the organisational force of connectives and their role in sustaining cohesion. The description is intended as a contribution for a better understanding of the variations in the dominant tendencies for text organisation in each language. The findings are expected to be utilised for pedagogical purposes, particularly in improving EFL teaching of writing at the undergraduate level. The study is based on an empirical investigation of the phenomenon of connectivity and, for optimal efficiency, employs computer-aided procedures, particularly those adopted in corpus linguistics, for investigatory purposes. One important methodological requirement is the establishment of two comparable and statistically adequate corpora, also the design of software and the use of existing packages and to achieve the basic analysis. Each corpus comprises ca 250,000 words of newspaper material sampled in accordance to a specific set of criteria and assembled in machine readable form prior to the computer-assisted analysis. A suite of programmes have been written in SPITBOL to accomplish a variety of analytical tasks, and in particular to perform a battery of measurements intended to quantify the textual functioning of connectives in each corpus. Concordances and some word lists are produced by using OCP. Results of these researches confirm the existence of fundamental differences in text organisation in Arabic in comparison to English. This manifests itself in the way textual operations of grouping and sequencing are performed and in the intensity of the textual role of connectives in imposing linearity and continuity and in maintaining overall stability. Furthermore, computation of connective functionality and range of operationality has identified fundamental differences in the way favourable choices for text organisation are made and implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic keyword or keyphrase extraction is concerned with assigning keyphrases to documents based on words from within the document. Previous studies have shown that in a significant number of cases author-supplied keywords are not appropriate for the document to which they are attached. This can either be because they represent what the author believes the paper is about not what it actually is, or because they include keyphrases which are more classificatory than explanatory e.g., “University of Poppleton” instead of “Knowledge Discovery in Databases”. Thus, there is a need for a system that can generate appropriate and diverse range of keyphrases that reflect the document. This paper proposes a solution that examines the synonyms of words and phrases in the document to find the underlying themes, and presents these as appropriate keyphrases. The primary method explores taking n-grams of the source document phrases, and examining the synonyms of these, while the secondary considers grouping outputs by their synonyms. The experiments undertaken show the primary method produces good results and that the secondary method produces both good results and potential for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic keyword or keyphrase extraction is concerned with assigning keyphrases to documents based on words from within the document. Previous studies have shown that in a significant number of cases author-supplied keywords are not appropriate for the document to which they are attached. This can either be because they represent what the author believes a paper is about not what it actually is, or because they include keyphrases which are more classificatory than explanatory e.g., “University of Poppleton” instead of “Knowledge Discovery in Databases”. Thus, there is a need for a system that can generate an appropriate and diverse range of keyphrases that reflect the document. This paper proposes two possible solutions that examine the synonyms of words and phrases in the document to find the underlying themes, and presents these as appropriate keyphrases. Using three different freely available thesauri, the work undertaken examines two different methods of producing keywords and compares the outcomes across multiple strands in the timeline. The primary method explores taking n-grams of the source document phrases, and examining the synonyms of these, while the secondary considers grouping outputs by their synonyms. The experiments undertaken show the primary method produces good results and that the secondary method produces both good results and potential for future work. In addition, the different qualities of the thesauri are examined and it is concluded that the more entries in a thesaurus, the better it is likely to perform. The age of the thesaurus or the size of each entry does not correlate to performance.

Relevância:

20.00% 20.00%

Publicador: