13 resultados para Tetrachlorides.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anion of MeO2CCH2CH2SnCl4 - was obtained by decomposing the yellow solution of MeO2CCH2CH2SnCl3.(2-OHC6H4CH=NC6H5) by standing for 15 days, which is the product of 3-methoxy-carbonylethyltin trichlorides with Schiff base (2-OHC6H4CH=NC6H5). The title compound was characterized by elemental analysis, IR. H-1 NMR,C-13 NMR and X-ray diffraction analysis. The crystal of the title compound belongs to orthorhombic system, space group P2cn, a=7.852(2), b=12.236(1),c=16.952(4)Adegrees, V=1628.7 Angstrom(3), Z=4, D-c=1.79g/cm(3) F(000)=860, mu=22.2cm(-1), R=0.0449, Rw=0.0382. The title compound exists as a discrete molecule, and the tin atom attains a distorted octahedral geometry via the coordination of intramolecular carbonyl oxygen and chloride ion. The coordination number of tin atom is 6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of NdCl3, with AlCl3 and mesitylene in benzene gives complex [Nd(eta (6)-1,3,5-C6H3Me3) (AlCl4)(3)] (C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X-lay diffractions. The X-ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P2(1)/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, beta = 90.85 (2)degrees, V = 3.2529(6) nm(3), D-c = 1.573 g/cm(3), Z = 4. A comparison of bond parameters for all the reported Ln(eta (6)-Ar) (AlCl4)(3) complexes indicates that the bond distance of Ln-C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mossbauer spectrum of a new organoeuropium complex with a neutral pi-ligand, Eu(eta6-C6Me6) (AlCl4)2, is measured at 88 K. The Mossbauer parameters derived from the spectrum show the divalent nature of the europium ion in this organoeuropium complex. The calculations of the electric field gradient at the Eu nucleus in the crystal indicate that the Eu-Cl bond in the compound may possess a certain covalent character. The low Debye temperature of this complex may be attributed to weak and delocalized pi-bonding between the Eu atom and the benzene ring of hexamethylbenzene, and a slow paramagnetic relaxation is suggested by the Mossbauer effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of neutral eta6-C6Me6 complexes of lanthanide elements Ln(176-C6Me6)(AlCl4)3 . MeC6H5(Ln = Nd, Sm, Gd, Yb) has been prepared directly in good yields from the reaction of LnCl3, AlCl3 and C6Me6 in toluene. The complexes have been characte

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of EuCl3, AlCl3 and C6Me6 in toluene gives the Eu(II) complex [Eu(eta-6-C6Me6)(AlCl4)2]4; X-ray crystal determination shows the molecule to be a cyclotetramer, in which the four Eu(C6Me6)AlCl4 units are connected via four groups of eta-2-AlCl4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of Me3SiCH2Cl2Sn(CH2)3SnCl2Ph (6) with (tBu2SnO)3 gave a statistical mixture of the corresponding tetraorganodistannoxanes whereas the reaction of the spacer-bridged ditin tetrachlorides RCl2Sn(CH2)4SnCl2R (3, R = Me3CCH2; 4, R = Me2CHCH2; 10, R = Me3SiCH2) with the polymeric spacer-bridged ditin oxides [R(O)Sn(CH2)4Sn(O)R]n (7, R = Me2CHCH2; 8, R = Me3CCH2; 11, R = Me3SiCH2) provided the mixed double ladder compounds {[R(Cl)Sn(CH2)4Sn(Cl)R][R(Cl)Sn(CH2)4Sn(Cl)R']O2}2 (9, R = Me3CCH2, R' = Me2CHCH2; 12, R = Me3CCH2, R' = Me3SiCH2) in almost quantitative yield. In solution, 9 and 12 are in equilibrium with their corresponding dimers, as was evidenced by 119Sn NMR spectroscopy, molecular mass determination, and electrospray mass spectrometry. The molecular structures of 9 and 12 were established by single crystal X-ray diffraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactions of group 14 tetrachlorides MCl4 (M=Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures lead to the unique complex ions [M(S2O7)3]2−, which show the central M atoms in coordination with three chelating S2O72− groups. The mean distances M[BOND]O within the anions increase from 175.6(2)–177.5(2) pm (M=Si) to 186.4(4)–187.7(4) pm (M=Ge) to 201.9(2)–203.5(2) pm (M=Sn). These distances are reproduced well by DFT calculations. The same calculations show an increasing positive charge for the central M atom in the row Si, Ge, Sn, which can be interpreted as the decreasing covalency of the M[BOND]O bonds. For the silicon compound (NH4)2[Si(S2O7)3], 29Si solid-state NMR measurements have been performed, with the results showing a signal at −215.5 ppm for (NH4)2[Si(S2O7)3], which is in very good agreement with theoretical estimations. In addition, the vibrational modes within the [MO6] skeleton have been monitored by Raman spectroscopy for selected examples, and are well reproduced by theory. The charge balance for the [M(S2O7)3]2− ions is achieved by monovalent A+ counter ions (A=NH4, Ag), which are implemented in the syntheses in the form of their sulfates. The sizes of the A+ ions, that is, their coordination requirements, cause the crystallographic differences in the crystal structures, although the complex [M(S2O7)3]2− ions remain essentially unaffected with the different A+ ions. Furthermore, the nature of the A+ ions influences the thermal behavior of the compounds, which has been monitored for selected examples by thermogravimetric differential thermal analysis (DTA/TG) and XRD measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of the group 14 tetrachlorides MCl4 (M = Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures led to the unique anionic complexes [M(S2O7)3]2– that show the central M atoms in coordination of three chelating S2O72– groups. The mean distances M–O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S2O7)3]2– anions is achieved by alkaline metal ions A+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S2O7)3]2– anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg2[Ge(S2O7)3]Cl2 which forms when HgCl2 is added as a source for the counter cation. The Hg2+ and the Cl– ions form infinite cationic chains according to 1∞[HgCl2/2]+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A2SO4 and the dioxides MO2, whereas Hg2[Ge(S2O7)3]Cl2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na2[Si(S2O7)3] has additionally been examined by solid state 29Si and 23Na NMR spectroscopic measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Work performed at the Argonne National Laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.