954 resultados para Tethys, paleogeography, paleoenvironments, reefs, carbonate platforms
Resumo:
Isolated carbonate platforms occur throughout the geologic record, from Archean to present. Although the respective roles of tectonics, sediment supply and sea-level changes in the stratigraphical architecture of these systems are relatively well constrained, the details of the nature and controls on the variability of sedimentological patterns between and within individual geomorphologic units on platforms have been barely investigated. This study aims at describing and comparing geomorphological and sedimentological features of surficial sediments and fossil reefs from three isolated carbonate platforms located in the SW Indian Ocean (Glorieuses, Juan de Nova and Europa). These carbonate platforms are relatively small and lack continuous reef margins, which have developed only on windward sides. Field observations, petrographic characterization and grain-size analyses are used to illustrate the spatial patterns of sediment accumulation on these platforms. The internal parts of both Glorieuses and Juan de Nova platforms are blanketed by sand dunes with medium to coarse sands with numerous reef pinnacles. Skeletal components including coral, green algae, and benthic foraminifera fragments prevail in these sediments. Europa platform exhibits a similar skeletal assemblage dominated by coral fragments, with the absence of wave-driven sedimentary bodies. Fossil reefs from the Last interglacial (125,000 years BP) occur on the three platforms. At Glorieuses, a succession of drowned terraces detected on seismic lines is interpreted as reflecting the last deglacial sea-level rise initiated 20,000 years ago. These findings highlight the high potential of these platforms to study past sea-level changes and the related reef response, which remain poorly documented in the SW Indian Ocean.
Resumo:
Guadalupian reefs occur locally in Guangxi, Guizhou, Yunnan and Western Zhejiang, South China. Two types of Guadalupian reefs can be recognized, one is developed in carbonate platforms, e.g. those in the juncture areas of Guangxi, Yunnan and Guizhou; the other occurs in a littoral clastic shelf. The Lengwu reef in Western Zhejiang is a representative of the latter type, which is a major topic of this paper. Lengwu algae-sponge reef, more than one hundred meters in thickness, are composed mainly of sponges, hydrozoans, algae, bryozoans, microbes and lime mud. Reef limestones sit on the mudstone interbedded with fine sandstone of the proximal prodelta facies and are overlain by coarse clasts of the delta front sediments. Lengwu reef displays a lens-shaped relief, dipping and thinning from the reef core, which is remarkably different from the surrounding sediments, showing a protruding relief. Sponges and microbe/algae form bafflestone, bindstone and framestone of the reef core facies. Fore-reef facies is characterized by lithoclastic rudstone and bioclastic packstone. Reef limestone sequence is composed of three cycles and controlled by sea level changes and sediment influx. Such reef is unique among the Guadalupian reefs in South China, but seems similar in some aspects to lwaizaki reef limestones of south Kitakami in Japan. Algae and microbes growing around sponges to form rigid structure in Lengwu reef are a typical feature, which is distinctly different to Guadalupian reefs in a stable platform facies of Guizhou, Yunnan and Guangxi, South China.
Resumo:
Herein we report an analysis of an Oxfordian (Upper Jurassic) paleoreef located in the Swiss Jura Mountains. The paleoreef is located in a Middle Oxfordian transitional interval in which sedimentation switched from marl-dominated to carbonate-dominated deposits. The paleoecosystem is composed of four successive fossil communities characterized by microsolenid corals and organisms that specialized in suspension feeding. Carbon isotopes measured from echinoid spine carbonates exhibit a positive trend from similar to 1.0 parts per thousand to 2.5 parts per thousand in delta(13)C values from the base to the top of the paleoreef. Comparison of delta(13)C curves with organic matter and belemnites shows different patterns not compatible with a global variation of the carbon cycle. Similar fossil assemblages and stratigraphic sequences identical in age are found along the continental margin of the Tethys-Atlantic Ocean. This biolithostratigraphic succession corresponds to increasing delta(13)C values of marine and biogenic carbonates, to the transition from marl-dominated to carbonate-dominated deposits, and to the development of carbonate platforms, which together suggest a change in the carbon cycling regime within the Tethys-Atlantic Ocean system.
Resumo:
Shedding of shallow carbonate material toward the deep slopes and basin floors is clearly tied to the position of the carbonate bank tops relative to the photic zone. The onset of bank shedding in periplatform sediments can record either the flooding of the bank tops within the photic zone during a rise in sea level following a period of exposure, referred to in the literature as the "highstand shedding" scenario, or the reentry of the bank tops into the photic zone during a lowering of sea level following a period of drowning, referred to as the "lowstand shedding" scenario. Results from Leg 133 post-cruise research on the Pliocene sequences, drilled in six sites within different slope settings of the Queensland Plateau, seem to point out that the latter "lowstand shedding" scenario can be applied to this particular carbonate system. At the Queensland Plateau sites, the early Pliocene (5.2-3.5 Ma) and the earliest part of the late Pliocene (3.5-2.9 Ma) age sequences were characterized, especially in the ôdeepö Sites 811 and 817, by pelagic sediments (foraminifers and coccoliths) and by typically pelagic sedimentation rates not exceeding 20 mm/k.y. The earliest part of the late Pliocene age section was characterized by well-developed hardgrounds in the "shallow" Sites 812 and 814 and by normal pelagic sediments mixed with reworked phosphatized planktonic foraminifers in Site 813. Finally, the early part of the late Pliocene (2.9-2.4 Ma) section was characterized by high sedimentation rates, related to the shedding and admixture into the pelagic sediments of bank-derived materials. These bank-derived materials consist of either diagenetically unaltered fine aragonite with traces of dolomite in Site 818 or micritic calcite resulting from seafloor and/or shallow burial alteration in the deepest Sites 817 and 811. The highest sedimentation rates (163 mm/k.y.) were recorded in Site 818, drilled nearest the modern carbonate bank of Tregrosse Reef. The sedimentation rates decrease with increasing distance from Tregrosse Reef - 120 mm/k.y. in Site 817 and 47.5 mm/k.y. in Site 811. The initial appearance of fine aragonite in Site 818, corresponding to the transition from pelagic to periplatform sedimentation rates, has been dated at 2.9 Ma. This Pliocene sediment pattern on the Queensland Plateau is different from the pattern observed in sediments from two earlier ODP legs (i.e., Leg 101 in the Bahamas and in Leg 115 in the Maldives), where aragonite-rich sediments, characterized by high periplatform sedimentation rates, were observed in the lower Pliocene section (5.2-3.5 Ma), whereas the upper Pliocene (3.5-1.6 Ma) sediments are more pelagic in nature and are characterized by low sedimentation rates or major hiatuses. These Pliocene periplatform sequences in the Bahamas and in the Maldives and late Quaternary age periplatform sequences worldwide have pointed out that "highstand shedding" was the typical response of carbonate platforms to fluctuations in sea level, just opposite to a "lowstand shedding" response to sea-level fluctuations, typical of siliciclastic shelves. Assuming that the envelope of Haq et al.'s (1987) sea-level curve, showing a well-defined lowering of sea level between 3.5 and 2.9 Ma, can also be applied to the southwest Pacific Ocean, based on a high-resolution Pliocene d18O record from the Ontong Java Plateau recently published by Jansen et al. (1993, doi:10.2973/odp.proc.sr.130.028.1993), the Pliocene periplatform sequences on the Queensland Plateau would have recorded the reentry of the bank tops into the photic zone during a general lowering of sea level, following an interval characterized by high sea level, during which the shallow carbonate system on the Queensland Plateau was drowned. The early Pliocene age (5.2-3.5 Ma) sediments deposited on the Queensland Plateau, an established interval of eustatic sea-level highstand, are typically pelagic in character. In addition, relatively cold surface temperatures (estimated to have ranged from 18° to 20°C by Isern et al. [this volume]) might have also stressed the reefs during early Pliocene time and contributed to the drowning of the Queensland Plateau carbonate system during the late Miocene and early Pliocene. Differential and relatively high subsidence rates, inferred by variations in paleodepth of water (based upon benthic foraminifer assemblages; Katz and Miller, this volume) may also have influenced the drowning of the carbonate bank tops on the Queensland Plateau during the late Miocene and early Pliocene. The sediments of early late Pliocene age (2.9-2.4 Ma), a well-established interval of lowering of sea level, are clearly periplatform and cyclic in nature. High-frequency (~40 k.y.) aragonite cycles, well-developed between 2.9 and 2.45 Ma, correlate with the planktonic high-resolution Pliocene d18O record from the Ontong Java Plateau, a good sea-level proxy (Jansen et al., in press). Contrary to late Quaternary age aragonite cycles from the Bahamas, the Nicaragua Rise, the Maldives, and the Queensland Plateau, the late Pliocene aragonite cycles in Hole 818B display high levels of aragonite during glacial stages and, therefore, lowstands of sea level. In addition, sediments deposited during the earliest part of the late Pliocene (3.5-2.9 Ma), transition between the early Pliocene highstand and the late Pliocene lowering in sea level, have recorded the first evidence of a fall in sea level, by (1) the occurrence of synchronous submarine hardgrounds in the two shallowest sites (Sites 812 and 814), (2) the deposition of reworked material from the shallower part of the slope into the intermediate Sites 813 and 818, and (3) the deposition of pelagic sediments in the deepest Sites 817 and 817. In summary, contrary to previous findings, the Pliocene periplatform sediments on the Queensland Plateau appear to have recorded a regional shedding of shallow carbonate bank tops during an interval of sea-level lowering, a good illustration of the "carbonate lowstand shedding" scenario, occurring during the reentry of previously drowned carbonate bank tops into the photic zone related to a decrease in sea level.
Resumo:
Pure limestones beneath the paleosols on San Salvador Island, Bahamas, contain strong positive magnetic susceptibility anomalies, although the iron content is generally very low. These magnetic phenomena differ from those associated with disconformities, which are marked by accumulation of paramagnetic airborne dust deposits with relatively high iron content. The strength and characters of the magnetic response in these subsurface zones correspond to the presence of magnetite, particularly small single-domain magnetite crystals of microbial origin. These crystals are not present elsewhere in the intergranular rock pores or microvugs. They are preferentially concentrated in capillary microborings, which developed concurrently with formation of calcite cements that have soil-related C and O isotope compositions. These magnetic zones occur several meters below the overlying soil horizons. Very thin and long linear microborings may be attributable to cyanobacterial microborers. The single-domain magnetites in these micrometer-size tunnels plugged by calcite appear to result from later occupation of these tiny holes by magnetotactic bacteria. Inorganic origin of the magnetite seems unlikely. Numerous traces that suggest subsurface microbial activity provide evidence that may be used to develop possible scenarios for subsequent biological studies of the precise bacteria involved.
Resumo:
Chemical Stratigraphy, or the study of the variation of chemical elements within sedimentary sequences, has gradually become an experienced tool in the research and correlation of global geologic events. In this paper 87Sr/ 86Sr ratios of the Triassic marine carbonates (Muschelkalk facies) of southeast Iberian Ranges, Iberian Peninsula, are presented and the representative Sr-isotopic curve constructed for the upper Ladinian interval. The studied stratigraphic succession is 102 meters thick, continuous, and well preserved. Previous paleontological data from macro and micro, ammonites, bivalves, foraminifera, conodonts and palynological assemblages, suggest a Fassanian-Longobardian age (Late Ladinian). Although diagenetic minerals are present in small amounts, the elemental data content of bulk carbonate samples, especially Sr contents, show a major variation that probably reflects palaeoenvironmental changes. The 87Sr/86Sr ratios curve shows a rise from 0.707649 near the base of the section to 0.707741 and then declines rapidly to 0.707624, with a final values rise up to 0.70787 in the upper part. The data up to meter 80 in the studied succession is broadly concurrent with 87Sr/86Sr ratios of sequences of similar age and complements these data. Moreover, the sequence stratigraphic framework and its key surfaces, which are difficult to be recognised just based in the facies analysis, are characterised by combining variations of the Ca, Mg, Mn, Sr and CaCO3 contents
Resumo:
The study of modern carbonate systems is commonly helps in improving facies interpretation in fossil reefs and in providing analogues of sediment distribution depending on the specific platform configuration (i.e. rimmed shelves and isolated carbonate platforms). This paper deals with a geomorphological and sedimentological study of the Glorieuses Archipelago, an isolated carbonate platform located between the northern tip of Madagascar and Mayotte. The dataset consists of Digital Terrain Model, satellite imagery, and box-sediment samples. Analyses of grain-size and composition of carbonate grains are used to characterize the distribution and heterogeneity of sediment accumulated on the isolated platform. Main results show that the Glorieuses Archipelago is organized in distinctive morphological units, including a reef flat developed along the windward side, an apron, and a semi-enclosed (< 12 m water depth) to open lagoon (> 12 m and up to 15 m water depth). The lack of carbonate mud in sediments deposited on the archipelago can be explained by the direct connection between the lagoon and the open ocean. The main carbonate grains include Halimeda segments, coral fragments, large benthic foraminifers, red algae, and molluscs. According to the shape and the position of intertidal sandwaves, the current arrangement of moderately sorted fine to medium sands appears to be strongly influenced by tidal currents. The in-situ sediment production, accumulation and transport on the platform finally contribute to carbonate sand export to distinct deep marine areas depending on wind regimes and currents.
Resumo:
The Middle and Upper Jurassique limestones investigated were sub-divided into nine microfacies (MF) types. The firsts four represent Bathonian sediments with shallow water characteristics typical for carbonate platforms. They are comparable with Wilson's facies zones 6 to 8. Reef and reef debris, near-shore clastic-dominated limestones are not present. These MF-types are reiterated several times without cyclicity. The vertical development of the differentiated facies units indicates a close interfingering. The microfacies data are typical of inter to shallow subtidal environments; both authigenous quartz and low faunal and floral diversity of several layers point to temporary restricted conditions. The occurrence of Dictyoconus cayeuxi LUCAS and Callovian ammonites from the above lying strata argue for a Bathonian age. The MF-types 5-9 (Oxfordian-Kimmeridgian) show completely different sedimentation conditions. Fully marine nearshore recifal limestones alternate with pelagic sediments formed at deeper shelf areas. The pelagic micritic limestones of Oxfordian age are characterized by allodapic intercalations whereas the Oxfordian/Kimmeridgian limestones with tuberolithic fabrics often show intensive silifications. Only initial patch reef growth-stages were reached during the development of the Oxfordian and Kimmeridgian shallow water limestones.
Resumo:
In this paper we present first results of the study of planktonic Foraminifera, large benthic Foraminifera and carbonate facies of La Désirade, aiming at a definition of the age and depositional environments of the Neogene carbonates of this island. The study of planktonic Foraminifera from the Detrital Offshore Limestones (DOL) of the Anciènne Carrière allows to constrain the biochronology of this formation to the lower Zone N19 and indicates a latest Miocene to early Pliocene (5.48 - 4.52 Ma) age. Large benthic Foraminifera were studied both as isolated and often naturally split specimens from the DOL, and in thin sections of limestones from the DOL and the Limestone Table (LT). The assemblages of Foraminifera include Nummulitidae, Amphisteginidae, Asterigerinidae, Peneroplidae, Soritidae, Rotalidae (Globigerinidae: Globigerinoides, Sphaeroidenellopsis, Orbulina) and incrusting Foraminifera (Homotrema and Sporadotrema). The genera Amphistegina, Archaias and Operculina are discussed. Concerning the Nummulitidae we include both "Paraspiroclypeus" chawneri and "Nummulites" cojimarensis, as well as a newly described species, Operculina desiradensis new species, in the genus Operculina, because the differences between these 3 species are rather on the specific than the generic level, while their morphology, studied by SEM, is compatible with the definition of the genus Operculina (D'Orbigny1826, emend. Hottinger 1977). The three species can be easily distinguished on the basis of their differences in spiral growth: while O. desiradensis has an overall logarithmic spiral growth, O. cojimarensis and especially O. chawneri show a tighter and more geometric spiral growth. O. cojimarensis and O. chawneri were originally described from Cuba in outcrops originally dated as Oligocene and later redated as early Pliocene. Therefore, O. chawneri was considered until now as restricted to the early Pliocene. However, in the absence of a detailed morphometric and biostratigraphic study of the Caribbean Neogene nummulitids, it is difficult to evaluate the biochronologic range of these species.The history of the carbonates begins with the initial tectonic uplift and erosion of the Jurassic igneous basement of La Désirade, that must have occurred at latest in late Miocene times, when sea-level oscillated around a long term stable mean. The rhythmic deposition of the Désirade Limestone Table (LT) can be explained by synsedimentary subsidence in a context of rapidly oscillating sea-level due to precession-driven (19-21 kyr) glacio-eustatic sea-level changes during the latest Miocene- Pliocene. Except for a thin reef cap present at the eastern edge of the LT, no other in-place reefal constructions have been observed in the LT. The DOL of western Désirade are interpreted as below wave base gravity deposits that accumulated beneath a steep fore-reef slope. They document the mobilisation of carbonate material (including Larger Foraminifera) from an adjacent carbonate platform by storms and their gravitational emplacement as debris and grain flows. The provenance of both the reefal carbonate debris and the tuffaceous components redeposited in the carbonates of La Désirade must be to the west, i. e. the carbonate platforms of Marie Galante and Grande Terre.
Resumo:
The carbon isotopic signature of carbonates depends on secular variations of organic carbon and carbonate carbon production/burial rates. A decrease in carbonate productivity makes the organic/carbonate carbon ratio unstable up to the point that even minor variations in the organic carbon reservoirs can provoke carbon isotopic shifts. The delta(13)C positive shifts of the middle Carixian (early Pliensbachian) and the early Bajocian recorded in the Umbria-Marche-Sabina domain represent a good example of this mechanism. Both sedimentology and lithostratigraphy of pelagic platform-basin carbonate systems in this area show that important changes in the source of carbonates correspond to the observed isotopic shifts. The middle Carixian event is in fact well correlatable to the drastic reduction of benthic carbonate production on rift-related intrabasinal highs, which then became pelagic carbonate platforms. The early Bajocian event is concomitant with the beginning of a long hiatus on the pelagic carbonate platforms and with a drop of the biodiversity of calcareous organisms followed by the onset of biosiliceous sedimentation in basins. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
New detailed stratigraphic and micropaleontological works on the famous exposures of Permian rocks in Hydra rich in Foraminifera, allows to define the stratigraphy of other outcrops in Aegina, Salamis, Attica and Chios. A synthetic section is presented which is characterized by the development of 3 successive carbonate platforms during the Permian and by 4 main tectonostratigraphic events. The youngest of these events marks the closure of the Paleotethyan ocean and the collision of a former Gondwanian/Cimmerian passive margin in the S with an active margin in the N.
Resumo:
Marine and terrestrial sediments of the Valanginian age display a distinct positive δ13C excursion, which has recently been interpreted as the expression of an oceanic anoxic episode (OAE) of global importance. Here we evaluate the extent of anaerobic conditions in marine bottom waters and explore the mechanisms involved in changing carbon storage on a global scale during this time interval. We asses redox-sensitive trace-element distributions (RSTE; uranium, vanadium, cobalt, arsenic and molybdenum) and the quality and quantity of preserved organic matter (OM) in representative sections along a shelf-basin transect in the western Tethys, in the Polish Basin and on Shatsky Rise. OM-rich layers corresponding in time to the δ13C shift are generally rare in the Tethyan sections and if present, the layers are not thicker than several centimetres and total organic carbon (TOC) contents do not surpass 1.68 wt..%. Palynological observations and geochemical properties of the preserved OM suggest a mixed marine and terrestrial origin and deposition in an oxic environment. In the Polish Basin, OM-rich layers show evidence for an important continental component. RSTE exhibit no major enrichments during the δ13C excursion in all studied Tethyan sections. RSTE enrichments are, however, observed in the pre-δ13C excursion OM-rich “Barrande” levels of the Vocontian Trough. In addition, all Tethyan sections record higher Mn contents during the δ13C shift, indicating rather well-oxygenated bottom waters in the western Tethys and the presence of anoxic basins elsewhere, such as the restricted basins of the North Atlantic and Weddell Sea. We propose that the Valanginian δ13C shift is the consequence of a combination of increased OM storage in marginal seas and on continents (as a sink of 12C-enriched organic carbon), coupled with the demise of shallow-water carbonate platforms (diminishing the storage capacity of 13C-enriched carbonate carbon). As such the Valanginian provides a more faithful natural analogue to present-day environmental change than most other Mesozoic OAEs, which are characterized by the development of ocean-wide dysaerobic to anaerobic conditions.
Resumo:
Site 534 reflects a complex interplay of global, basinal, and local influences on sedimentation during the Callovian and Late Jurassic. Rifting and rapid subsidence of the continental margins of the North Atlantic-Tethys seaway occurred during the late Early Jurassic (Sinemurian-Pliensbachian), but rapid spreading between the North American margin (Blake Spur Ridge and magnetic lineation) and the northwest African margin did not commence until the Bathonian or earliest Callovian. Site 534, drilled on marine magnetic anomaly "M-28" of Bryan et al. (1980), was initially about 150 km from either continental margin. The ?middle Callovian basal sediments are dusky red silty marl. Callovian transgression led to active carbonate platforms on the margin, recorded at Site 534 as a rise in the CCD (carbonate compensation depth), then arrival of lime-rich turbidites from the Blake Plateau platform across the Blake Spur Ridge. The host pelagic sediment is greenish black, organic-rich, radiolarian-rich, silty claystone. Hydrothermal activity on the nearby spreading ridge enriched this lower unit in metals. In the Oxfordian, the input of terrestrial silt rapidly diminished; radiolarians or other bioclasts were not preserved. The dark variegated claystone has fine-grained marl and reddish claystone turbidite beds. The late Callovian-Oxfordian Western Tethys has radiolarian chert deposition, marine hiatuses, or organic-rich sediments. The Kimmeridgian and Tithonian had a stable or receding sea level. Near the end of the Jurassic many of the carbonate platforms of the margins were buried beneath prograding fan or alluvial deposits. Carbonate deposition shifted to the deep sea. Site 534 records the deepening of the CCD and ACD (aragonite compensation depth) during the Kimmeridgian and early Tithonian, then a rise of the ACD in the middle Tithonian. Similar trends occurred throughout the Western Tethys-Atlantic. High nannofossil productivity of the seaway led to deposition of very widespread white micritic limestone in the late Tithonian-Berriasian. The underlying sediment had a slower deposition rate of carbonate, therefore its higher clay and associated Fe content produced a red marl. A short sea-level incursion occurred on the Atlantic margins during the Kimmeridgian and is reflected in the Site 534 greenish gray marl unit by numerous turbidite beds of shallow-water carbonates.
Resumo:
Several vertebrae of a sauropterygian specimen have been recovered in Fuencaliente de Medinaceli (Soria Province, Castilla y León, Spain). The remains come from Middle–Upper Triassic Muschelkalk Facies. This finding represents the first documented evidence of a Triassic tetrapod in Castilla y León. The vertebrae belong to Nothosaurus, a sauropterygian genus found in Europe, Middle East, North of Africa and China. This genus is poorly-known in the Iberian record. The new remains constitute the first evidence of the species Nothosaurus giganteus, or a related taxon, in the Iberian Peninsula. This study reveals the occurrence of at least two species of the sauropterygian Nothosaurus in the Spanish record.