963 resultados para Tethered swimming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine whether: i) tethered-swimming can be used to identify the asymmetry during front crawl swimming style; ii) swimmers that perform unilateral breathing present greater asymmetry in comparison to others that use bilateral breathing; iii) swimmers of best performance present smaller asymmetry than their counterparts; iv) repeated front crawl swimming movements influence body asymmetry. 18 swimmers were assessed for propulsive force parameters (peak force, mean force, impulse and rate of force development) during a maximal front crawl tethered-swimming test lasting 2 min. A factorial analysis showed that propulsive forces decreased at the beginning, intermediate and end of the test (p<0.05), but the asymmetries were not changed at different instants of the test. When breathing preference (uni- or bilateral) was analyzed, asymmetry remained unchanged in all force parameters (p>0.05). When performance was considered (below or above mean group time), a larger asymmetry was found in the sub-group of lower performance in comparison to those of best performance (p<0.05). Therefore, the asymmetries of the propulsive forces can be detected using tethered-swimming. The propulsive forces decreased during the test but asymmetries did not change under testing conditions. Although breathing preference did not influence asymmetry, swimmers with best performance were less asymmetric than their counterparts. © Georg Thieme Verlag KG Stuttgart New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake (̇VO2MAX) and force associated with the ̇VO2MAX (i ̇VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ̇VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ̇VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ̇VO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming. © Georg Thieme Verlag KG Stuttgart . New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to examine the reliability of tethered swimming in the evaluation of age group swimmers. The sample was composed of 8 male national level swimmers with at least 4 years of experience in competitive swimming. Each swimmer performed two 30 second maximal intensity tethered swimming tests, on separate days. Individual force-time curves were registered to assess maximum force, mean force and the mean impulse of force. Both consistency and reliability were very strong, with Cronbach’s Alpha values ranging from 0.970 to 0.995. All the applied metrics presented a very high agreement between tests, with the mean impulse of force presenting the highest. These results indicate that tethered swimming can be used to evaluate age group swimmers. Furthermore, better comprehension of the swimmers ability to effectively exert force in the water can be obtained using the impulse of force. Key words: swimming, training and testing, propulsive force, front crawl.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste estudo foi analisar a reprodutibilidade dos parâmetros biomecânicos da curva força-tempo do estilo "Crawl" em um protocolo de 10 s no nado atado. Dezesseis nadadores do sexo masculino (idade: 20,4 ± 4,0 anos; tempo na prova de 100 m livre: 53,68 ± 0,99 s) realizaram dois esforços máximos de 10 s no nado atado. Os parâmetros força pico, força média, taxa de desenvolvimento de força, impulso, duração da braçada, tempo para atingir a força pico e força mínima foram representados pela média de oito braçadas consecutivas obtidas em cada tentativa. Utilizou-se o teste t para observar as diferenças entre os esforços para cada parâmetro. O nível de significância estabelecido foi de 5%. A reprodutibilidade relativa foi medida pelo coeficiente de correlação de Pearson e a consistência entre as duas tentativas pelo coeficiente de correlação intraclasse (CCI). A reprodutibilidade absoluta foi verificada pelo coeficiente de variação (CV). Não foi demonstrada diferença estatisticamente significante para nenhum parâmetro biomecânico quando comparados os dois esforços. Os elevados CCI e baixos CV indicaram alta consistência interna dos parâmetros analisados. Conclui-se que os parâmetros biomecânicos analisados a partir do nado atado são reprodutíveis quando empregado protocolo de curta duração o que demonstra a possibilidade de utilização do protocolo com alto grau de confiabilidade, por parte de treinadores e atletas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical interactions play a fundamental role in the ecology of marine foodwebs. Dimethyl sulfide (DMS) is a ubiquitous marine trace gas that acts as a bioactive compound by eliciting foraging behavior in a range of marine taxa including the copepod Temora longicornis. Production of DMS can rapidly increase following microzooplankton grazing on phytoplankton. Here, we investigated whether grazing-induced DMS elicits an increase in foraging behavior in the copepod Calanus helgolandicus. We developed a semi-automated method to quantify the effect of grazing-mediated DMS on the proportion of the time budget tethered females allocate towards slow swimming, typically associated with feeding. The pooled data showed no differences in the proportion of the 25 min time budget allocated towards slow swimming between high (23.6 +/- 9.74%) and low (29.1 +/- 18.33%) DMS treatments. However, there was a high degree of variability between behavioral responses of individual copepods. We discuss the need for more detailed species-specific studies of individual level responses of copepods to chemical signals at different spatial scales to improve our understanding of chemical interactions between copepods and their prey.

Relevância:

20.00% 20.00%

Publicador: