970 resultados para Tetanic tension
Resumo:
Carnitine, a structurally choline-like metabolite, has been used to increase athletic performance, although its effects on neuromuscular transmission have not been investigated. It is present in skeletal muscle and its plasma levels are about 30 to 90 µM. Using rat phrenic nerve diaphragm preparations indirectly and directly stimulated with high rate pulses, D-carnitine (30 and 60 µM), L-carnitine (60 µM) and DL-carnitine (60 µM) were shown to induce tetanic fade (D-carnitine = 19.7 ± 3.1%, N = 6; L-carnitine = 16.6 ± 2.4%, N = 6; DL-carnitine = 14.9 ± 2.1%, N = 6) without any reduction of maximal tetanic tension. D-carnitine induced tetanic fade in neuromuscular preparations previously paralyzed with d-tubocurarine and directly stimulated. The effect was greater than that obtained by indirect muscle stimulation. Furthermore, previous addition of atropine (20 to 80 µM) to the bath did not reduce carnitine isomer-induced tetanic fade. In contrast to D-carnitine, the tetanic fade induced by L- and DL-carnitine was antagonized by choline (60 µM). The combined effect of carnitine isomers and hemicholinium-3 (0.01 nM) was similar to the effect of hemicholinium-3 alone. The data suggest that L- and DL-carnitine-induced tetanic fade seems to depend on their transport into the motor nerve terminal.
Resumo:
Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM) reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM) but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM) and isoproterenol (20 nM) administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM), supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.
Resumo:
Nitric oxide (NO)-synthase is present in diaphragm, phrenic nerve and vascular smooth muscle. It has been shown that the NO precursor L-arginine (L-Arg) at the presynaptic level increases the amplitude of muscular contraction (AMC) and induces tetanic fade when the muscle is indirectly stimulated at low and high frequencies, respectively. However, the precursor in muscle reduces AMC and maximal tetanic fade when the preparations are stimulated directly. In the present study the importance of NO synthesized in different tissues for the L-Arg-induced neuromuscular effects was investigated. Hemoglobin (50 nM) did not produce any neuromuscular effect, but antagonized the increase in AMC and tetanic fade induced by L-Arg (9.4 mM) in rat phrenic nerve-diaphragm preparations. D-Arg (9.4 mM) did not produce any effect when preparations were stimulated indirectly at low or high frequency. Hemoglobin did not inhibit the decrease of AMC or the reduction in maximal tetanic tension induced by L-Arg in preparations previously paralyzed with d-tubocurarine and directly stimulated. Since only the presynaptic effects induced by L-Arg were antagonized by hemoglobin, the present results suggest that NO synthesized in muscle acts on nerve and skeletal muscle. Nevertheless, NO produced in nerve and vascular smooth muscle does not seem to act on skeletal muscle.
Resumo:
Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM) reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM) but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM) and isoproterenol (20 nM) administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM), supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.
Resumo:
A comparative study between crotoxin and gamma irradiated crotoxin was performed on the indirectly evoked twitches and tetani of sciatic nerve-extensor digitorum longus muscle of rats. Crotoxin (3 to 14 mu g/ml) decreased the amplitude of twitches and induced a slight tetanic fade, and irradiated crotoxin did not significantly affect either twitch amplitude or tetanic tension. Since gamma radiation reduced the neurotoxicity of crotoxin it may be useful for the production of anticrotalic serum. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.
Resumo:
Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
This work presents and discusses the influence of the surface tension (gamma(LV)) of methanol/water mixtures on the flotation response of apatite versus gangue minerals conditioned with flotation reagents (75 g/t cornstarch and 100 g/t Berol 867) at pH 10.6. Berol 867 is a collector composed of sodium alkyl sarcosinate plus nonionic surfactant. The highest Schulz efficiency of separation (recovery of apatite minus recovery of gangue) was achieved at approximate to 51.0 mN/m. The critical surface tension of wettability (gamma(C)) of apatite was found to occur at 34.7 mN/m when determined by means of gamma flotation experiments, , and it was 33.9 mN/m when determined by Zisman`s approach.
Resumo:
In the present study we investigated tension regulation in the human soleus (SOL) muscle during controlled lengthening and shortening actions. Eleven subjects performed plantar flexor efforts on an ankle torque motor through 30 degrees of ankle displacement (75 degrees-105 degrees internal ankle angle) at lengthening and shortening velocities of 5, 15 and 30 degrees s(-1). To isolate the SOL from the remainder of the triceps surae, the subject's knee was flexed to 60 degrees during all trials. Voluntary plantar flexor efforts were performed under two test conditions: (1) maximal voluntary activation (MVA) of the SOL, and (2) constant submaximal voluntary activation (SVA) of the SOL. SVA trials were performed with direct visual feedback of the SOL electromyogram (EMG) at a level resulting in a torque output of 30% of isometric maximum. Angle-specific (90 degrees ankle angle) torque and EMG of the SOL, medial gastrocnemius (MG) and tibialis anterior (TA) were recorded. In seven subjects from the initial group, the test protocol was repeated under submaximal percutaneous electrical activation (SEA) of SOL (to 30% isometric maximal effort). Lengthening torques were significantly greater than shortening torques in all test conditions. Lengthening torques in MVA and SVA were independent of velocity and remained at the isometric level, whereas SEA torques were greater than isometric torques and increased at higher lengthening velocities. Shortening torques were lower than the isometric level for all conditions. However, whereas SVA and SEA torques decreased at higher velocities of shortening, MVA torques were independent of velocity. These results indicate velocity- and activation-type-specific tension regulation in the human SOL muscle.
Resumo:
Different stoichiometries are observed between alpha and beta subunits of Na,K-ATPase that depend on the method employed to solubilize and purify the enzyme. It is not known whether this variability is due to loss of protein-protein association, or is a result of the replacement of essential phospholipids by detergent molecules. With the aim of understanding the effect of enzyme/surfactant ratio on both the catalytic activity and the enzyme structure, we have investigated the bulk and surface properties of the enzyme. The circular dichroism (CD) spectra, surface tension and dilatational surface elasticity results were compared with the residual ATPase activity of the Na,K-ATPase in different surfactant and protein concentrations. Na,K-ATPase in the (alpha beta)(2) form dissociated to the alpha beta form on dilution, and associated to the (alpha beta)(4) form when concentrated. These different stoichiometries have similar ATPase activities and are in equilibrium at C(12)E(8) concentrations below the CIVIC (0.053 mg mL(-1)). At detergent concentrations above the CIVIC the ATPase activity of all forms was abolished, which is concomitant with the dissociation of the a and subunits. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background and Aim: Although prophylaxis with beta-blockers has been shown to decrease variceal pressure and wall tension in cirrhotic patients, this has not been demonstrated in non-cirrhotic portal hypertension caused by Schistosoma mansoni infection. Methods: Thirteen patients without history of previous gastrointestinal bleeding were included. All of them had high-risk esophageal varices at endoscopy. An endoscopic gauge and a high-frequency endoscopic ultrasonography miniprobe were used to assess transmural variceal pressure and wall tension before and after achieving beta-blockade with propranolol. Results: Baseline variceal pressure decreased from 13.3 +/- 3.5 to 8.2 +/- 2.0 mmHg (P < 0.0001) and wall tension from 500.2 +/- 279.8 to 274.0 +/- 108.3 mg.mm-1. The overall effect of propranolol on decreasing variceal pressure and wall tension expressed in percentage change in relation to baseline values was 35.7 +/- 18.4% and 35.9 +/- 26.7%, respectively (P = 0.9993). Conclusion: Propranolol significantly reduced variceal pressure and wall tension in schistosomiasis.
Resumo:
Background. A variety of techniques can be used to achieve stabilization of femoral valgus osteotomies in children, but what is lacking is a versatile fixation system that associates stability and versatility at different ages and for different degrees of deformity. Methods. Mechanical tests of three configurations used to fix femoral valgus osteotomies, based oil the tension band wire principle, were carried out. A 30 degrees wedge valgus osteotomy was performed at the subtrochanteric level in 60 swine femurs and fixed with three different systems. In Group 1, two Kirschner wires (K wire) were introduced from the tip of the greater trochanter to the medial cortex, crossing the osteotomy. A flexible steel wire was anchored to the K wires into holes in the lateral cortex and tightened to form a tension band. The same setup was used in Group 2, but two additional smooth K wires were inserted into the lateral surface of the greater trochanter and driven to the femoral head with the distal extremities bent and tied around tile bone shaft. In Group 3, the fixation was similar to that in Group 2, but tile ascending K wires were introduced below the osteotomy level, crossing the osteotonly. Mechanical tests in bending-compression and torsion were used to access the stability. Findings. The torsional relative stiffness was 116% greater for Group 3 (0.27 N m/degree) and no significant difference was found between Group 1 (0.10 N m/degree) and Group 2 (0.12 N m/degree). The average torque was 103% higher for Group 3 (1.86 N m). Stiffness in bending-compression was significantly higher in Group 3 (508 x 10(3) N/m) than in Group 1 (211 x 10(3) N/m) and Group 2 (219 x 10(3) N/m). Interpretation. Fixation as used in Group 3 was significantly more stable, both in torsion and bending-compression tests, than tile other two techniques. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading, and is supposed to be mediated by several host mediators, such as chemokines. In this study we investigated the pattern of mRNAs expression encoding for osteoblast and osteoclast related chemokines, and further correlated them with the profile of bone remodeling markers in palatal and buccal sides of tooth under orthodontic force, where tensile (T) and compressive (C) forces, respectively, predominate. Real-time PCR was performed with periodontal ligament mRNA from samples of T and C sides of human teeth submitted to rapid maxillary expansion, while periodontal ligament of normal teeth were used as controls. Results showed that both T and C sides exhibited significant higher expression of all targets when compared to controls. Comparing C and T sides, C side exhibited higher expression of MCP-1/CCL2, MIP-1 alpha/CCL3 and RANKL, while T side presented higher expression of OCN. The expression of RANTES/CCL5 and SDF-1/CXCL12 was similar in C and T sides. Our data demonstrate a differential expression of chemokines in compressed and stretched PDL during orthodontic tooth movement, suggesting that chemokines pattern may contribute to the differential bone remodeling in response to orthodontic force through the establishment of distinct microenvironments in compression and tension sides. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
To estimate the 1-year prevalence of tension-type headache (TTH) and the degree of the association of TTH with some sociodemographic characteristics of a representative sample of the adult population of Brazil. This was an observational, cross-sectional, population-based study. We conducted telephone interviews on 3848 people, aged 18-79 years, randomly selected from the 27 states of Brazil. Trained lay interviewers administered the structured questionnaire. It included questions about the sociodemographic characteristics of the population, as well as questions about headache. The degree of the association was calculated through prevalence ratios, adjusted with Poisson regression by gender, age, years of education, marital status, household income, job status, body mass index (BMI), and physical exercise. The estimated 1-year gender- and-age-adjusted prevalence of TTH was 13.0% (95% CI: 11.8-14.2%); 15.4% in males and 9.5% in females. The prevalence of probable TTH was 22.6% (95% CI: 21.1-24.1%). Most (86.2%) subjects reported episodic TTH; 6.4% had chronic TTH. The prevalence was higher at 18-29 years of age (16.2%). TTH was 1.6 times more prevalent in men, and 1.54 times more in subjects with more than 11 years of education. There was no significant association of TTH with marital or job status, household income, BMI, and physical activity. This is the first nationwide epidemiological study of TTH in Brazil. The overall prevalence of TTH in Brazil is low, at 13%. TTH is significantly more prevalent in males and subjects with higher education level.