903 resultados para Tests for Continuous Lifetime Data
Resumo:
there has been much research on analyzing various forms of competing risks data. Nevertheless, there are several occasions in survival studies, where the existing models and methodologies are inadequate for the analysis competing risks data. ldentifiabilty problem and various types of and censoring induce more complications in the analysis of competing risks data than in classical survival analysis. Parametric models are not adequate for the analysis of competing risks data since the assumptions about the underlying lifetime distributions may not hold well. Motivated by this, in the present study. we develop some new inference procedures, which are completely distribution free for the analysis of competing risks data.
Resumo:
Heterogeneity in lifetime data may be modelled by multiplying an individual's hazard by an unobserved frailty. We test for the presence of frailty of this kind in univariate and bivariate data with Weibull distributed lifetimes, using statistics based on the ordered Cox-Snell residuals from the null model of no frailty. The form of the statistics is suggested by outlier testing in the gamma distribution. We find through simulation that the sum of the k largest or k smallest order statistics, for suitably chosen k , provides a powerful test when the frailty distribution is assumed to be gamma or positive stable, respectively. We provide recommended values of k for sample sizes up to 100 and simple formulae for estimated critical values for tests at the 5% level.
Resumo:
In this paper we introduce a parametric model for handling lifetime data where an early lifetime can be related to the infant-mortality failure or to the wear processes but we do not know which risk is responsible for the failure. The maximum likelihood approach and the sampling-based approach are used to get the inferences of interest. Some special cases of the proposed model are studied via Monte Carlo methods for size and power of hypothesis tests. To illustrate the proposed methodology, we introduce an example consisting of a real data set.
Resumo:
In this paper we propose a hybrid hazard regression model with threshold stress which includes the proportional hazards and the accelerated failure time models as particular cases. To express the behavior of lifetimes the generalized-gamma distribution is assumed and an inverse power law model with a threshold stress is considered. For parameter estimation we develop a sampling-based posterior inference procedure based on Markov Chain Monte Carlo techniques. We assume proper but vague priors for the parameters of interest. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumption of vague priors. Further, some discussions on model selection criteria are given. The methodology is illustrated on simulated and real lifetime data set.
Resumo:
Tests for dependence of continuous, discrete and mixed continuous-discrete variables are ubiquitous in science. The goal of this paper is to derive Bayesian alternatives to frequentist null hypothesis significance tests for dependence. In particular, we will present three Bayesian tests for dependence of binary, continuous and mixed variables. These tests are nonparametric and based on the Dirichlet Process, which allows us to use the same prior model for all of them. Therefore, the tests are “consistent” among each other, in the sense that the probabilities that variables are dependent computed with these tests are commensurable across the different types of variables being tested. By means of simulations with artificial data, we show the effectiveness of the new tests.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
Historically, the cure rate model has been used for modeling time-to-event data within which a significant proportion of patients are assumed to be cured of illnesses, including breast cancer, non-Hodgkin lymphoma, leukemia, prostate cancer, melanoma, and head and neck cancer. Perhaps the most popular type of cure rate model is the mixture model introduced by Berkson and Gage [1]. In this model, it is assumed that a certain proportion of the patients are cured, in the sense that they do not present the event of interest during a long period of time and can found to be immune to the cause of failure under study. In this paper, we propose a general hazard model which accommodates comprehensive families of cure rate models as particular cases, including the model proposed by Berkson and Gage. The maximum-likelihood-estimation procedure is discussed. A simulation study analyzes the coverage probabilities of the asymptotic confidence intervals for the parameters. A real data set on children exposed to HIV by vertical transmission illustrates the methodology.
Resumo:
Rockburst is characterized by a violent explosion of a block causing a sudden rupture in the rock and is quite common in deep tunnels. It is critical to understand the phenomenon of rockburst, focusing on the patterns of occurrence so these events can be avoided and/or managed saving costs and possibly lives. The failure mechanism of rockburst needs to be better understood. Laboratory experiments are undergoing at the Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE) of Beijing and the system is described. A large number of rockburst tests were performed and their information collected, stored in a database and analyzed. Data Mining (DM) techniques were applied to the database in order to develop predictive models for the rockburst maximum stress (σRB) and rockburst risk index (IRB) that need the results of such tests to be determined. With the developed models it is possible to predict these parameters with high accuracy levels using data from the rock mass and specific project.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.
Resumo:
Advances in hardware and software technologies allow to capture streaming data. The area of Data Stream Mining (DSM) is concerned with the analysis of these vast amounts of data as it is generated in real-time. Data stream classification is one of the most important DSM techniques allowing to classify previously unseen data instances. Different to traditional classifiers for static data, data stream classifiers need to adapt to concept changes (concept drift) in the stream in real-time in order to reflect the most recent concept in the data as accurately as possible. A recent addition to the data stream classifier toolbox is eRules which induces and updates a set of expressive rules that can easily be interpreted by humans. However, like most rule-based data stream classifiers, eRules exhibits a poor computational performance when confronted with continuous attributes. In this work, we propose an approach to deal with continuous data effectively and accurately in rule-based classifiers by using the Gaussian distribution as heuristic for building rule terms on continuous attributes. We show on the example of eRules that incorporating our method for continuous attributes indeed speeds up the real-time rule induction process while maintaining a similar level of accuracy compared with the original eRules classifier. We termed this new version of eRules with our approach G-eRules.