939 resultados para Testosterone Secretion
Resumo:
The aim of the present experiment was to investigate the effect of corticosteroids (exogen) on in vitro testosterone secretion after stress by transportation (40 minutes). Feline testes (Felis silvestris catus) were incubated in the following media: TCM 199; TCM 199 + hCG 10_7M; TCM 199 + hydrocortisone 10_7M, or TCM 199 + hCG + hydrocortisone. The animals (n=21) were allocated into three groups: (S) that arrived at 3 h prior to surgery, (A) that remained in the laboratory for 36 h before being submitted to surgical procedure, and (C) that were also allowed to remain for 36 hours in the laboratory before the surgical procedure, but whose testes had been incubated with hydrocortisone prior to incubation in the referred media. The results showed that group S secreted higher levels of testosterone, regardless of the culture media. It is noteworthy that the suppressing action of hydrocortisone sodium succinate led to a reduction in the testosterone concentration, despite the presence of hCG.
Resumo:
The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.
Resumo:
The cane toad (Bufo marinus) was used as a model to study male anuran reproductive endocrinology and to develop a protocol for non-invasive sperm recovery. Circulating testosterone concentrations in 6-hourly samples did not vary significantly (P < 0.05) over a 24 h period although there was a tendency (P = 0.06) for testosterone to be elevated at 19:00 h relative to other times of the day, which may be related to the nocturnal activity pattern of this species. Testosterone secretion after intraperitoneal (IP) injection of either a GnRH agonist (5 mu g IP) or hCG (1000 IU) was also examined. While the GnRH agonist did not produce a significant increase above basal plasma testosterone (0.29, 95% C.I. of 0.05-1.10 ng/ml), injection of hCG resulted in an increase (P < 0.01) of plasma testosterone with peak concentrations at approximately 120 min (4.17, 95% C.I. of 2.69-7.44 ng/ml) after injection. Non-invasive pharmaceutical sperm recovery was attempted following IP injection of graded doses of GnRH agonist, hCG or FSH. Urine was collected at 3, 6 and 12 h after treatment to assess sperm quality and quantity. The optimal protocol for sperm recovery in cane toads was injection of either 1000 or 2000 IU hCG; there was no significant difference in the quality of the spermic urine samples obtained using either dose of hCG or with respect to collection time. The findings indicated that hCG can be used to assess testicular steroidogenic status and also to induce sperm recovery in the cane toad. The hCG protocols developed in this study will have application in studies on the reproductive biology of rare and endangered male anurans. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies.
Resumo:
Studies of behavior, endocrinology and physiology have described experiments in which animals housed in groups or in isolation were normally tested individually. The isolation of the animal from its group for testing is perhaps the most common situation used today in experimental procedures, i.e., there is no consideration of the acute stress which occurs when the animal is submitted to a situation different from that it is normally accustomed to, i.e., group living. In the present study, we used 90 male 120-day-old rats (Rattus norvegicus) divided into 5 groups of 18 animals, which were housed 3 per cage, in a total of 6 cages. The animals were tested individually or with their groups for exploratory behavior. Hormones were determined by radioimmunoassay using specific kits. The results showed statistically significant differences between testing conditions in terms of behavior and of adrenocorticotrophic hormone (ACTH: from 116.8 ± 15.27 to 88.77 ± 18.74 when in group and to 159.6 ± 11.53 pg/ml when isolated), corticosterone (from 561.01 ± 77.04 to 1036.47 ± 79.81 when in group and to 784.71 ± 55.88 ng/ml when isolated), luteinizing hormone (from 0.84 ± 0.09 to 0.58 ± 0.05 when in group and to 0.52 ± 0.06 ng/ml when isolated) and prolactin (from 5.18 ± 0.33 to 9.37 ± 0.96 when in group and to 10.18 ± 1.23 ng/ml when isolated) secretion, but not in terms of follicle-stimulating hormone or testosterone secretion. The most important feature observed was that in each cage there was one animal with higher ACTH levels than the other two; furthermore, the exploratory behavior of this animal was different, indicating the occurrence of almost constant higher vigilance in this animal (latency to leave the den in group: 99.17 ± 34.95 and isolated: 675.3 ± 145.3 s). The data indicate that in each group there is an animal in a peculiar situation and its behavior can be detected by ACTH determination in addition to behavioral performance.
Resumo:
Objetivo: Avaliar o padrão pulsátil da secreção da testosterona em mulheres normais. Métodos: Oito mulheres saudáveis com ciclos ovulatórios foram selecionadas. Amostras sanguíneas foram coletadas a cada dez minutos durante seis horas, começando entre 7 e 8 h da manhã, após dez horas de jejum, nas três fases do ciclo menstrual: folicular média (Dia 7), folicular tardia (Dia 12) e lútea (Dia 21). Foram mensurados: testosterona, LH e, no basal, também SHBG. Resultados: A frequência dos pulsos de testosterona, média da amplitude do pulso, porcentagem do incremento da amplitude, duração e intervalos dos pulsos foram similares nas três fases (p > 0,05). A pulsatilidade do LH foi estatisticamente diferente entre as três fases (p < 0,001), caracterizando padrão característico do ciclo ovulatório normal. Conclusões: Esses dados aumentam o conhecimento sobre o padrão de secreção da testosterona no ciclo menstrual humano e representam uma contribuição para a investigação clínica, tanto no hiperandrogenismo como na síndrome de insuficiência androgênica __________________________________________________ ABSTRACT Objective: To evaluate the pattern of the pulsatile secretion of testosterone in normal menstrual cycle. Methods: Eight healthy women with ovulatory menstrual cycles were enrolled. Blood samples were collected at ten-minute intervals for six hours, starting between 7 and 8 am, after a ten-hour fasting, in three phases: mid-follicular (Day 7), late follicular (Day 12) and mid-luteal phase (Day 21). Samples were assayed for testosterone, LH and the baseline also for SHBG. Results: Testosterone pulse frequency, mean amplitude pulse, percentage of increment in pulse amplitude, mean duration of pulses and pulse interval were similar in the three phases. LH pulsatility was statistically different among the three phases (p < 0.001) representing normal ovulatory cycles. Conclusions: These data increase the knowledge about the testosterone secretion profile in the human menstrual cycle and can be used as a contribution to clinical investigation in both hyperandrogenism and androgen insufficiency syndrome
Resumo:
Testosterone secretion in mammals typically occurs in random pulses such that a single blood sample provides limited information on reproductive endocrine status. However, it has been shown in several species that an index of the prevailing testosterone biosynthetic capacity of the testes can be obtained by measuring the increase in circulating testosterone after injection of a GnRH agonist or human chorionic gonadotrophin (hCG). Hence, the aims of the present study were to examine fluctuations in testosterone secretion in the koala (n = 6) over a 24-hour period and then characterise testosterone secretion after injection of the GnRH agonist buserelin (4 mu g) or hCG (1000 IU). The latter was used to establish an index of the prevailing testosterone biosynthetic capacity of the koala testis. Individual koalas showed major changes in blood testosterone concentrations over 24 hours, but there was no apparent diurnal pattern of testosterone secretion (P >.05). Injection of buserelin and hCG resulted in an increase (P
Resumo:
Objetivo: Avaliar o padrão pulsátil da secreção da testosterona em mulheres normais. Métodos: Oito mulheres saudáveis com ciclos ovulatórios foram selecionadas. Amostras sanguíneas foram coletadas a cada dez minutos durante seis horas, começando entre 7 e 8 h da manhã, após dez horas de jejum, nas três fases do ciclo menstrual: folicular média (Dia 7), folicular tardia (Dia 12) e lútea (Dia 21). Foram mensurados: testosterona, LH e, no basal, também SHBG. Resultados: A frequência dos pulsos de testosterona, média da amplitude do pulso, porcentagem do incremento da amplitude, duração e intervalos dos pulsos foram similares nas três fases (p > 0,05). A pulsatilidade do LH foi estatisticamente diferente entre as três fases (p < 0,001), caracterizando padrão característico do ciclo ovulatório normal. Conclusões: Esses dados aumentam o conhecimento sobre o padrão de secreção da testosterona no ciclo menstrual humano e representam uma contribuição para a investigação clínica, tanto no hiperandrogenismo como na síndrome de insuficiência androgênica __________________________________________________ ABSTRACT Objective: To evaluate the pattern of the pulsatile secretion of testosterone in normal menstrual cycle. Methods: Eight healthy women with ovulatory menstrual cycles were enrolled. Blood samples were collected at ten-minute intervals for six hours, starting between 7 and 8 am, after a ten-hour fasting, in three phases: mid-follicular (Day 7), late follicular (Day 12) and mid-luteal phase (Day 21). Samples were assayed for testosterone, LH and the baseline also for SHBG. Results: Testosterone pulse frequency, mean amplitude pulse, percentage of increment in pulse amplitude, mean duration of pulses and pulse interval were similar in the three phases. LH pulsatility was statistically different among the three phases (p < 0.001) representing normal ovulatory cycles. Conclusions: These data increase the knowledge about the testosterone secretion profile in the human menstrual cycle and can be used as a contribution to clinical investigation in both hyperandrogenism and androgen insufficiency syndrome
Resumo:
Objetivo: Avaliar o padrão pulsátil da secreção da testosterona em mulheres normais. Métodos: Oito mulheres saudáveis com ciclos ovulatórios foram selecionadas. Amostras sanguíneas foram coletadas a cada dez minutos durante seis horas, começando entre 7 e 8 h da manhã, após dez horas de jejum, nas três fases do ciclo menstrual: folicular média (Dia 7), folicular tardia (Dia 12) e lútea (Dia 21). Foram mensurados: testosterona, LH e, no basal, também SHBG. Resultados: A frequência dos pulsos de testosterona, média da amplitude do pulso, porcentagem do incremento da amplitude, duração e intervalos dos pulsos foram similares nas três fases (p > 0,05). A pulsatilidade do LH foi estatisticamente diferente entre as três fases (p < 0,001), caracterizando padrão característico do ciclo ovulatório normal. Conclusões: Esses dados aumentam o conhecimento sobre o padrão de secreção da testosterona no ciclo menstrual humano e representam uma contribuição para a investigação clínica, tanto no hiperandrogenismo como na síndrome de insuficiência androgênica __________________________________________________ ABSTRACT Objective: To evaluate the pattern of the pulsatile secretion of testosterone in normal menstrual cycle. Methods: Eight healthy women with ovulatory menstrual cycles were enrolled. Blood samples were collected at ten-minute intervals for six hours, starting between 7 and 8 am, after a ten-hour fasting, in three phases: mid-follicular (Day 7), late follicular (Day 12) and mid-luteal phase (Day 21). Samples were assayed for testosterone, LH and the baseline also for SHBG. Results: Testosterone pulse frequency, mean amplitude pulse, percentage of increment in pulse amplitude, mean duration of pulses and pulse interval were similar in the three phases. LH pulsatility was statistically different among the three phases (p < 0.001) representing normal ovulatory cycles. Conclusions: These data increase the knowledge about the testosterone secretion profile in the human menstrual cycle and can be used as a contribution to clinical investigation in both hyperandrogenism and androgen insufficiency syndrome
Resumo:
ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X(1)-P2X(7)) and seven heteromeric receptors (P2X(1/2), P2X(1/4), P2X(1/5), P2X(2/3), P2X(2/6), P2X(4/6), P2X(4/7)) have been described. ATP treatment of Leydig cells leads to an increase in [Ca(2+)](i) and testosterone secretion, supporting the hypothesis that Ca(2+) signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X(2). In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X(2), P2X(4), P2X(6), and P2X(7) subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 mu M ivermectin induced an increase (131.2 +/- 5.9%) and 3 mu M ivermectin a decrease (64.2 +/- 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X(4) subunits. P2X(7) receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X(2/4/6), is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X(2) subunit.
Resumo:
The human luteinizing hormone/chorionic gonadotropin receptor (LHCGR) plays a fundamental role in male and female reproductive physiology. Over the past 15 years, several homozygous or compound heterozygous loss-of-function mutations in the LHCGR gene have been described in males and females. In genetic males, mutations in LHCGR were associated with distinct degrees of impairment in pre- and postnatal testosterone secretion resulting in a phenotypic spectrum. Patients with the severe form of LH resistance have predominantly female external genitalia and absence of secondary sex differentiation at puberty. Patients with milder forms have predominantly male external genitalia with micropenis and/or hypospadias or only infertility without ambiguity. The undermasculization is associated with low basal, as well as human CG-stimulated, testosterone levels and elevated LH levels after pubertal age, without abnormal step-up in testosterone biosynthesis precursors. The testes have only slightly reduced size but mature Leydig cells are absent or scarce (Leydig cell hypoplasia). Genetic females with inactivating LHCGR mutations have female external genitalia, spontaneous breast and pubic hair development at puberty, and normal or late menarche followed by oligoamenorrhea and infertility. Estradiol and progesterone levels are normal for the early to midfollicular phase, but do not reach ovulatory or luteal phase levels. Serum LH levels are high whereas follicle-stimulating hormone levels are normal or only slightly increased. Pelvic ultrasound has demonstrated a small or normal uterus and normal or enlarged ovaries with cysts. The inactivating mutations of the LHCGR have provided important insights into distinct physiological roles of LH in reproduction of both sexes.
Resumo:
The objective was to compare testis characteristics of Zebu bulls treated with the GnRH agonist, deslorelin, at different times and for different durations during their development. An additional objective was to determine the usefulness of a stain for the transcription factor GATA-binding protein 4 (GATA-4) as a specific marker for Sertoli cell nuclei in cattle. Bulls (54) were allocated to nine groups (n = 6) and received s.c. deslorelin implants as follows: G1 = from birth to 3 mo of age; G2 = from 3 to 6 mo; G3 = from 6 to 9 mo; G4 = from 9 to 12 mo; G5 = from birth to 15 mo; G6 = from 3 to 15 mo; G7 = from 6 to 15 mo; G8 = from 12 to 15 mo; and G9 (control) = no implant. Bulls were castrated at 19 mo of age. Paraffin sections (10 mu m) were subjected to quantitative morphometry and GATA-4 immunohistochemistry. At castration, all bulls in the control group (6/6) had attained puberty (scrotal circumference ! 28 cm), whereas a smaller proportion (P < 0.05) had reached puberty in G2 (2/5) and G6 (1/ 6). Bulls in G2 and G6 also had a lesser (P < 0.05) testis weight compared with the control group. Total volume of seminiferous epithelium and total daily sperm production in G2 and G6 were only half that observed in the control group. Spermatids were observed in less than 50% of seminiferous tubules in G2, G6, and G7 compared with 82% in the control group (P < 0.05). Staining for GATA-4 was specific for and abundant in the Sertoli cell nucleus in both pre- and postpubertal bulls, and no other cell nucleus inside the seminiferous tubule was positive for GATA-4. Total number of Sertoli cells was not affected by treatment (P = 0.45), but nuclear volume was smaller in G2 and G6 (P < 0.05) compared with the control group. In conclusion, treatment of Zebu bulls with deslorelin had no apparent beneficial effect on testis development and delayed puberty when treatment was initiated at 3 mo of age. Staining for GATA-4 was a useful method for identifying and quantifying Sertoli cell nuclei in both pre- and postpubertal bulls.
Resumo:
Interactions between testosterone, estradiol, and inhibin in the control of gonadotrophin secretion in males are poorly understood. Castrated rams were treated with steroid-free bovine follicular fluid (bFF), testosterone, or estradiol and for 7 d (2 x 2 x 2 factorial design). Given independently, none of the exogenous hormones affected follicle-stimulating hormone (FSH) concentrations, but the combination of one or both steroids with bFF reduced FSH secretion. Testosterone and estradiol reduced luteinizing hormone (LH) pulse frequency (there was no synergism), and bFF had no effect. Plasma prolactin concentrations were not affected by any treatment. To locate the central sites of steroid action, castrated rams were bilaterally implanted in the preoptic area (POA), ventromedial nucleus (VMH), or arcuate nucleus (ARC). These implants did not affect FSH or prolactin concentrations, or LH pulse amplitude. The frequency of the LH pulses was not affected by testosterone in any site. Estradiol located in the ARC, but not the POA or VMH, decreased LH pulse frequency. In summary, FSH secretion is controlled by synergistic interactions between inhibin and estradiol or testosterone, whereas GnRH/LH pulse frequency is controlled by testicular steroids. Estradiol acts partly, at least, in the ARC, but the central site of action, testosterone remains unknown.
Resumo:
A sex steroid-dependent modulation of the immune function in mammals is accepted, and evidence suggests that while estrogens enhance, androgens inhibit the immune response. The aim of this study was to explore in the adult male rat the effect of either neonatal flutamide (FTM) treatment or prepubertal orchidectomy (ODX) on endocrine markers in the basal condition and peripheral tumor necrosis factor alpha (TNFα) levels during inflammatory stress. For these purposes, (1) 5-day-old male rats were subcutaneously injected with either sterile vehicle alone or containing 1.75 mg FTM, and (2) 25-day-old male rats were sham operated or had ODX. Rats were sacrificed (at 100 days of age) in the basal condition for determination of peripheral metabolite levels. Additional rats were intravenously injected with bacterial lipopolysaccharide (LPS; 25 μg/kg body weight, i.v.) and bled for up to 4 h. Data indicate that (1) ODX increased peripheral glucocorticoid levels and reduced those of testosterone, whereas FTM-treated rats displayed low circulating leptin concentrations, and (2) LPS-induced TNFα secretion in plasma was significantly enhanced in the FTM and ODX groups. Our study supports that neonatal FTM treatment affected adiposity function, and adds data maintaining that androgens have a suppressive role in proinflammatory cytokine release in plasma during inflammation.