623 resultados para Testis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In testis mRNA stability and translation initiation are extensively under the control of poly(A)-binding proteins (PABP). Here we have cloned a new human testis-specific PABP (PABP3) of 631 amino acids (70.1 kDa) with 92.5% identical residues to the ubiquitous PABP1. A northern blot of multiple human tissues hybridised with PABP3- and PABP1-specific oligonucleotide probes revealed two PABP3 mRNAs (2.1 and 2.5 kb) detected only in testis, whereas PABP1 mRNA (3.2 kb) was present in all tested tissues. In human adult testis, PABP3 mRNA expression was restricted to round spermatids, whereas PABP1 was expressed in these cells as well as in pachytene spermatocytes. PABP3-specific antibodies identified a protein of 70 kDa in human testis extracts. This protein binds poly(A) with a slightly lower affinity as compared to PABP1. The human PABP3 gene is intronless with a transcription start site 61 nt upstream from the initiation codon. A sequence of 256 bp upstream from the transcription start site drives the promoter activity of PABP3 and its tissue-specific expression. The expression of PABP3 might be a way to bypass PABP1 translational repression and to produce the amount of PABP needed for active mRNA translation in spermatids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testis angiotensin-converting enzyme (ACE) is a unique form of ACE, only produced by male germ cells, and results from a testis-specific promoter found within the ACE gene. We have investigated the role of cAMP-response element modulator (CREM)tau in testis ACE transcription. In gel shift experiments, testes nuclear proteins retard an oligonucleotide containing the cAMP-response element (CRE) found at position -55 in the testis ACE promoter. Anti-CREM antibody supershifts this complex. Competitive gel shift shows that recombinant CREM tau protein and testis nuclear proteins have a similar specificity of binding to the tests ACE CRE. Functional analysis using in vitro transcription and transfection studies also demonstrate that CREM tau protein is a transcriptional activator of the testis ACE promoter. Western blot analysis identifies CREM tau protein in the protein-DNA complex formed between nuclear proteins and the testis ACE CRE motif. This analysis also identified other CREM isoforms in the gel-shifted complex, which are thought to be CREM tau 1/2, CREM alpha/beta, and S-CREM. These data indicate that CREM tau isoforms play an important role as a positive regulator in the tissue-specific expression of testis ACE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The condition termed 46,XY complete gonadal dysgenesis is characterized by a completely female phenotype and streak gonads. In contrast, subjects with 46,XY partial gonadal dysgenesis and those with embryonic testicular regression sequence usually present ambiguous genitalia and a mix of Müllerian and Wolffian structures. In 46,XY partial gonadal dysgenesis gonadal histology shows evidence of incomplete testis determination. In 46,XY embryonic testicular regression sequence there is lack of gonadal tissue on both sides. Various lines of evidence suggest that embryonic testicular regression sequence is a variant form of 46,XY gonadal dysgenesis. The sex-determining region Y chromosome gene (SRY) encodes sequences for the testis-determining factor. To date germ-line mutations in SRY have been reported in approximately 20% of subjects with 46,XY complete gonadal dysgenesis. However, no germ-line mutations of SRY have been reported in subjects with the partial forms. We studied 20 subjects who presented either 46,XY partial gonadal dysgenesis or 46,XY embryonic testicular regression sequence. We examined the SRY gene and the minimum region of Y-specific DNA known to confer a male phenotype. The SRY-open reading frame (ORF) was normal in all subjects. However a de novo interstitial deletion 3' to the SRY-ORF was found in one subject. Although it is possible that the deletion was unrelated to the subject's phenotype, we propose that the deletion was responsible for the abnormal gonadal development by diminishing expression of SRY. We suggest that the deletion resulted either in the loss of sequences necessary for normal SRY expression or in a position effect that altered SRY expression. This case provides further evidence that deletions of the Y chromosome outside the SRY-ORF can result in either complete or incomplete sex reversal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testicular germ cell tumors are the most common form of cancer in young adult males. They result from a derangement of primordial germ cells, and they grow out from a noninvasive carcinoma-in-situ precursor. Since carcinoma in situ can readily be cured by low-dose irradiation, there is a great incentive for non- or minimally invasive methods for detection of carcinoma in situ. We have recently shown that human Tera-2 embryonal carcinoma cells, obtained from a nonseminomatous testicular germ cell tumor, show alternative splicing and alternative promoter use of the platelet-derived growth factor alpha-receptor gene, giving rise to a unique 1.5-kb transcript. In this study we have set up a reverse transcriptase-polymerase chain reaction strategy for characterization of the various transcripts for this receptor. Using this technique, we show that a panel of 18 seminomas and II nonseminomatous testicular germ cell tumors all express the 1.5-kb transcript. In addition, a panel of 27 samples of testis parenchyma with established carcinoma in situ were all found to be positive for the 1.5-kb transcript, while parenchyma lacking carcinoma in situ, placenta, and control semen were all negative. These data show that the 1.5-kb platelet-derived growth factor alpha-receptor transcript can be used as a highly selective marker for detection of early stages of human testicular germ cell tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously identified a testicular phosphoprotein that binds to highly conserved sequences (Y and H elements) in the 3' untranslated regions (UTRs) of testicular mRNAs and suppresses in vitro translation of mRNA constructs that contain these sequences. This protein, testis/brain RNA-binding protein (TB-RBP) also is abundant in brain and binds to brain mRNAs whose 3' UTRs contain similar sequences. Here we show that TB-RBP binds specific mRNAs to microtubules (MTs) in vitro. When TB-RBP is added to MTs reassembled from either crude brain extracts or from purified tubulin, most of the TB-RBP binds to MTs. The association of TB-RBP with MTs requires the assembly of MTs and is diminished by colcemid, cytochalasin D, and high levels of salt. Transcripts from the 3' UTRs of three mRNAs that contain the conserved sequence elements (transcripts for protamine 2, tau protein, and myelin basic protein) are linked by TB-RBP to MTs, whereas transcripts that lack the conserved sequences do not bind TB-RBP. We conclude that TB-RBP serves as an attachment protein for the MT association of specific mRNAs. Considering its ability to arrest translation in vitro, we propose that TB-RBP functions in the storage and transportation of mRNAs to specific intracellular sites where they are translated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and spermatids. We report on a young adult female patient who has PDC deficiency associated with a compound heterozygosity in PDHX encoding the E3-binding protein. Additionally, in the patient and in all members of her immediate family, a full-length testis-specific PDHA2 mRNA and a 5′UTR-truncated PDHA1 mRNA were detected in circulating lymphocytes and cultured fibroblasts, being bothmRNAs translated into full-length PDHA2 and PDHA1 proteins, resulting in the co-existence of both PDHA isoforms in somatic cells.Moreover, we observed that DNA hypomethylation of a CpG island in the coding region of PDHA2 gene is associatedwith the somatic activation of this gene transcription in these individuals. This study represents the first natural model of the de-repression of the testis-specific PDHA2 gene in human somatic cells, and raises some questions related to the somatic activation of this gene as a potential therapeutic approach for most forms of PDC deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HMG box containing protein 1 (HBP1) is a high mobility group domain transcriptional repressor that regulates proliferation in differentiated tissues. We have found mouse Hbp1 to be expressed strongly in the embryonic mouse testis from approximately 12.5 days post coitum, compared with low levels of expression in the embryonic ovary. Expression of Hbp1 is maintained in the developing testis beyond the onset of spermatogenesis after birth. Whole-mount in situ hybridisation analysis showed that expression of Hbp1 in the XY gonad is localized within the developing testis cords, the precursors of the seminiferous tubules. Expression of Hbp1 is not apparent in testis cords of gonads from homozygous We mutant embryos, which lack germ cells. In situ hybridisation analysis on cryosectioned embryonic testis indicated that Hbp1 expression resembles that of the germ cell marker Oct4. We conclude that Hbp1 is up-regulated specifically in germ cells of the developing XY gonad. The expression of Hbp1 in XY germ cells appears to correlate with the onset of mitotic arrest in these cells. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the importance of peritubular myoid (PM) cells in the histogenesis of the fetal testis, understanding the origin and function of these cells has been hampered by the lack of suitable markers. The current study was aimed at identifying molecular markers for PM cells during the early stages of testis development in the mouse embryo. Expression of candidate marker genes was tested by section in situ hybridisation, in some instances followed by immunofluorescent detection of protein products. Collagen type-1, inhibin beta A, caldesmon 1 and tropomyosin 1 were found to be expressed by early-stage PM cells. These markers were also expressed in subsets of interstitial cells, most likely reflecting their common embryological provenance from migrating mesonephric cells. Although not strictly specific for PM cells, these markers are likely to be useful in studying the biology of early PM cells in the fetal testis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix proteins play important roles in tissue morphogenesis. We have studied the expression of genes encoding the related SIBLING glycoproteins osteopontin (OPN), bone sialoprotein (BSP), and dentin matrix protein (DMP) during the development of male and female gonads during mouse embryogenesis. Opn mRNA was expressed specifically by Sertoli cells of the developing testis cords, in the mesonephric tubules of both sexes, and, transiently, in the Mullerian ducts of both sexes, as determined by whole-mount and section in situ hybridization. OPN protein was detected in the cytoplasm of Sertoli cells and luminal cells of the mesonephric tubules, with small amounts associated with the plasma membrane of germ cells. We found no defects in developing testes of Opn-/- mice using a range of cell type-specific markers, suggesting that other SIBLING proteins may function in testis development. Dmp and Bsp mRNA was also expressed in the developing testis cords, supporting the view that all three SIBLING proteins may contribute to testis differentiation. (c) 2005 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, strategies for gene identification based on differential gene expression have become increasingly popular, due in part to the development of microarray technology. These strategies are particularly well suited to the identification of genes involved in sex determination and gonadal development, which unlike the development of other organ systems, proceeds along two very different alternative courses, depending on the sex of the embryo. We have used a high-throughput, array-based expression screen to identify several genes expressed sex-specifically in developing mouse gonads. One of these, vanin 1, appears to play a role in mediating migration of mesonephric cells into the male genital ridge. Progress in characterizing other genes arising from the screen is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gonadal development is an ideal model to study organogenesis because a variety of developmental processes can be studied during the differentiation of the bipotential primordium into testis or ovary. To better understand this process, Representational Difference Analysis of cDNA was used to identify genes that are differentially expressed in mouse gonads at 13.5 days post-coitus. The analysis led to the identification of three testis specific genes and a sequence that was only expressed in the ovary. The male genes identified: renin, Col9a3, and a novel gene termed tescalcin had patterns of expression that suggested a role in testis determination. ^ Studies of the tescalcin gene revealed that it is organized into eight exons and seven introns. The gene was located at 64 cM in mouse chromosome 5, where it spans approximately 35 Kb. Three mRNA variants resulting from alternative splicing of intron 5 were identified in mouse tissues. Gel mobility shift assays demonstrated that Sp1 and Sp3 from Y-1, msc-1, and MIN-6 cells nuclear extracts bind the GC-boxes within the tescalcin proximal promoter. Bisulfite sequencing analysis of tescalcin CpG island revealed that it is differentially methylated in male and female mouse embryonic gonads, and that hypermethylation of this region represses expression of tescalcin in the β-TC3 cell line. ^ The major tescalcin mRNA encodes a protein with 214 amino acids that contains a consensus EF-hand Ca2+-binding domain and an N-myristoylation motif. The amino acid sequence of tescalcin is highly conserved among various species, and it showed the highest homology with calcineurin B homologous proteins 1 and 2, and calcineurin B. Western blot analysis using antibodies generated against the tescalcin protein confirmed its presence in specific mouse tissues and cell lines. Immunohistochemical analysis of mouse embryos confirmed the pattern of expression of tescalcin mRNA in fetal testis. Using pull-down assays, glyceraidehydes-3-phosphate dehydrogenase was identified as an interacting and potential functional partner of tescalcin. ^ The identification and characterization of tescalcin as a novel embryonic testicular marker will contribute to the elucidation of the genetic pathways involved in testis development and likely to the understanding of pathological conditions such as sex reversal and infertility. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les antigènes testiculaires du cancer sont des cibles idéales pour l’immunothérapie du cancer car ce sont des protéines immunogéniques dont l’expression est restreinte aux cellules germinales et au cancer. Le but de cette étude est d’évaluer le potentiel de MAGE-A11, un antigène testiculaire du cancer, comme cible pour développer un vaccin contre le cancer de la prostate. Pour ce faire, l’anticorps monoclonal 5C4 qui a la capacité de reconnaître la présence de MAGE-A11 dans les tissus fixés et inclus en paraffine a été produit. De plus, l’expression de MAGE-A11 a été analysée sur plusieurs lignées de cellules cancéreuses. Il a été démontré que MAGE-A11 est exprimé dans plusieurs types de cancers notamment dans le cancer du côlon et du cerveau. Finalement, nous avons identifié trois épitopes du CMH classe II HLA-DR1 dans la protéine MAGE-A11 confirmant ainsi l’immunogénicité de cet antigène et son potentiel comme cible pour l’immunothérapie du cancer.