991 resultados para Test points
Resumo:
Purpose: To examine the relationship of functional measurements with structural measures. Methods: 146 eyes of 83 test subjects underwent Heidelberg Retinal Tomography (HRTIII) (disc area<2.43, mphsd<40), and perimetry testing with Octopus (SAP; Dynamic), Pulsar (PP; TOP) and Moorfields MDT (ESTA). Glaucoma was defined as progressive structural or functional loss (20 eyes). Perimetry test points were grouped into 6 sectors based on the estimated optic nerve head angle into which the associated nerve fiber bundle enters (Garway-Heath map). Perimetry summary measures (PSM) (MD SAP/ MD PP/ PTD MDT) were calculated from the average total deviation of each measured threshold from the normal for each sector. We calculated the 95% significance level of the sectorial PSM from the respective normative data. We calculated the percentage agreement with group1 (G1), healthy on HRT and within normal perimetric limits, and group 2 (G2), abnormal on HRT and outside normal perimetric limits. We also examined the relationship of PSM and rim area (RA) in those sectors classified as abnormal by MRA (Moorfields Regression Analysis) of HRT. Results: The mean age was 65 (range= [37, 89]). The global sensitivity versus specificity of each instrument in detecting glaucomatous eyes was: MDT 80% vs. 88%, SAP 80% vs. 80%, PP 70% vs. 89% and HRT 80% vs. 79%. Highest percentage agreement of HRT (respectively G1, G2, sector) with PSM were MDT (89%, 57%, nasal superior), SAP (83%, 74%, temporal superior), PP (74%, 63%, nasal superior). Globally percentage agreement (respectively G1, G2) was MDT (92%, 28%), SAP (87%, 40%) and PP (77%, 49%). Linear regression showed there was no significant trend globally associating RA and PSM. However, sectorally the supero-nasal sector had a statistically significant (p<0.001) trend with each instrument, the associated r2 coefficients are (MDT 0.38 SAP 0.56 and PP 0.39). Conclusions: There were no significant differences in global sensitivity or specificity between instruments. Structure-function relationships varied significantly between instruments and were consistently strongest supero-nasally. Further studies are required to investigate these relationships in detail.
Resumo:
The electronics industry, is experiencing two trends one of which is the drive towards miniaturization of electronic products. The in-circuit testing predominantly used for continuity testing of printed circuit boards (PCB) can no longer meet the demands of smaller size circuits. This has lead to the development of moving probe testing equipment. Moving Probe Test opens up the opportunity to test PCBs where the test points are on a small pitch (distance between points). However, since the test uses probes that move sequentially to perform the test, the total test time is much greater than traditional in-circuit test. While significant effort has concentrated on the equipment design and development, little work has examined algorithms for efficient test sequencing. The test sequence has the greatest impact on total test time, which will determine the production cycle time of the product. Minimizing total test time is a NP-hard problem similar to the traveling salesman problem, except with two traveling salesmen that must coordinate their movements. The main goal of this thesis was to develop a heuristic algorithm to minimize the Flying Probe test time and evaluate the algorithm against a "Nearest Neighbor" algorithm. The algorithm was implemented with Visual Basic and MS Access database. The algorithm was evaluated with actual PCB test data taken from Industry. A statistical analysis with 95% C.C. was performed to test the hypothesis that the proposed algorithm finds a sequence which has a total test time less than the total test time found by the "Nearest Neighbor" approach. Findings demonstrated that the proposed heuristic algorithm reduces the total test time of the test and, therefore, production cycle time can be reduced through proper sequencing.
Resumo:
Purpose The aim of this study was to test the correlation between Fourier-domain (FD) optical coherence tomography (OCT) macular and retinal nerve fibre layer (RNFL) thickness and visual field (VF) loss on standard automated perimetry (SAP) in chiasmal compression. Methods A total of 35 eyes with permanent temporal VF defects and 35 controls underwent SAP and FD-OCT (3D OCT-1000; Topcon Corp.) examinations. Macular thickness measurements were averaged for the central area and for each quadrant and half of that area, whereas RNFL thickness was determined for six sectors around the optic disc. VF loss was estimated in six sectors of the VF and in the central 16 test points in the VF. The correlation between VF loss and OCT measurements was tested with Spearman`s correlation coefficients and with linear regression analysis. Results Macular and RNFL thickness parameters correlated strongly with SAP VF loss. Correlations were generally stronger between VF loss and quadrantic or hemianopic macular thickness than with sectoral RNFL thickness. For the macular parameters, we observed the strongest correlation between macular thickness in the inferonasal quadrant and VF loss in the superior temporal central quadrant (rho=0.78; P<0.001) whereas for the RNFL parameters the strongest correlation was observed between the superonasal optic disc sector and the central temporal VF defect (rho=0.60; P<0.001).
Resumo:
Objective: To propose an electronic method for sensitivity evaluation in leprosy and to compare it to the Semmes-Weinstein monofilaments. Methods:Thirty patients attending the Dermatology outpatient clinic of HCFMRP-USP were consecutively evaluated by both the electronic aesthesiometer and Semmes-Weinstein monofilaments on hand and foot test points. The intraclass correlation coefficient (ICC) was calculated to determine the variability of the electronic measures and the Kappa coefficient was calculated to determine the agreement between methods according to their categories (altered and non-altered tactile sensitivity). Results: The ICC was approximately 1, demonstrating repeatability. The Kappa coefficient showed more than 75 and 63% agreement on the hand and foot points, respectively. The mean agreement between the 2 methods for the 7 points of the right and left hand was 77.14 and 75.71%, respectively. The mean agreement for all 10 points was 74.33 and 63.66% on the right and left foot, respectively. In cases of disagreement the detection of altered tactile sensitivity by the electronic esthesiometer on the right and left foot was 90.91 and 84.25%, respectively, with no detection by the monofilaments. Conclusion: The results suggest that the electronic esthesiometer is a reliable and easy application, capable of evaluating alterations of tactile sensitivity in leprosy patients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Seasonal variations in ground temperature and moisture content influence the load carrying capacity of pavement subgrade layers. To improve pavement performance, pavement design guidelines require knowledge of environmental factors and subgrade stiffness relationships. As part of this study, in-ground instrumentation was installed in the pavement foundation layers of a newly constructed section along US Highway 20 near Fort Dodge, Iowa, to monitor the seasonal variations in temperature, frost depth, groundwater levels, and moisture regime. Dynamic cone penetrometer (DCP), nuclear gauge, and Clegg hammer tests were performed at 64 test points in a 6-ft x 6-ft grid pattern to characterize the subgrade stiffness properties (i.e., resilient modulus) prior to paving. The purpose of this paper is to present the field instrumentation results and the observed changes in soil properties due to seasonal environmental effects.
Resumo:
A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.
Resumo:
Työn tarkoituksena oli tutkia kuinka kaasukuplat jakautuvat sellususpensioon, kun prosessiolosuhteita muutetaan. Kuplien kokojakauman avulla pyritään kartoittamaan kuinka kaasukuplat pilkkoutuvat ja onko olemassa raja-arvoa, milloin tehon lisäys ei enää pilko sellususpensiossa olevia kuplia pienemmiksi. Jakaumien avulla voidaan mahdollisesti kehittää kaasunpoistoa. Työssä selvitettiin voidaanko kameratekniikkaa käyttää kuplakokojen määrittämiseen sellusulpusta. Läpinäkymätön sellumassa tarjoaa kuvaukselle haasteellisen ympäristön. Myöskään kirjallisuudessa ei vastaavaa menetelmää aikaisemmin oltu käytetty. Kuvatusta materiaalista laskettiin kuplien halkaisijat, joita pyrittiin tarkastelemaan tilastollisesti. Tilastollinen tarkastelu toi eroja mittauspisteiden välille. Kuplien halkaisijoiden perusteella mallinnettiin kuplakokoon vaikuttavat prosessisuureet lineaarisella regressioanalyysillä. Mallinnuksen perusteella saatiinvasteisiin vaikuttavat riippumattomat muuttujat ja niiden matemaattiset malliyhtälöt. Tuloksina saatiin selville, että kuplien kokojakaumissa on eroja sekoitussäiliön eri puolilla. Sekoitussäiliössä suurten kuplien suhteellinen osuus kasvaa kaasupitoisuuden ja sakeuden noustessa. Mallinnuksen tärkeimpänä tuloksena voidaan todeta, että sakeus ja kaasutilavuus vaikuttavat kuplakokoon kasvattavasti. Kierrosnopeuden kasvattaminen pienentää kuplakokoa. Visuaalisen informaation avulla on helpompi ymmärtää kuinka kuplat käyttäytyvät.
Resumo:
Microfibrillated cellulose (MFC) is known to enhance strength properties of paper. Improved strength usually means increased bonding which is strongly connected to dimensional instability of paper. Dimensional instability is due to changes in moisture content of paper; when paper is moistened it expands and when dried, it shrinks. Hygroexpansion is linked to end-use problems and excessive drying shrinkage consumes strength potential. Effective use of materials requires controlling of these phenomena. There isn’t yet data concerning dimensional stability of papers containing MFC which restricts wider use of MFC. Main objective of the work was to evaluate dimensional stability of wood-free paper containing different amounts of MFC. Sheets were dried with different methods to see how drying strains effected on drying shrinkage and hygroexpansion. Also tensile strength was measured to find out the effect of MFC. Results were compared to sheets containing kraft fines and in some test points cationic starch was used alongside with MFC. MFC increased the dimensional instability of freely dried sheets. As the amounts of MFC increased the effects on dimensional stability became more severe. However the fineness of MFC didn’t play any important role. Both hygroexpansion and drying shrinkage were decreased with cationic starch addition. Prevention of drying shrinkage over powered the effects of additives on hygroexpansion. Tensile strength improved up till 7 % addition amount which could be set as the upper limit of MFC addition when paper preparation and tensile strength are concerned.
Resumo:
Deflection compensation of flexible boom structures in robot positioning is usually done using tables containing the magnitude of the deflection with inverse kinematics solutions of a rigid structure. The number of table values increases greatly if the working area of the boom is large and the required positioning accuracy is high. The inverse kinematics problems are very nonlinear, and if the structure is redundant, in some cases it cannot be solved in a closed form. If the structural flexibility of the manipulator arms is taken into account, the problem is almost impossible to solve using analytical methods. Neural networks offer a possibility to approximate any linear or nonlinear function. This study presents four different methods of using neural networks in the static deflection compensation and inverse kinematics solution of a flexible hydraulically driven manipulator. The training information required for training neural networks is obtained by employing a simulation model that includes elasticity characteristics. The functionality of the presented methods is tested based on the simulated and measured results of positioning accuracy. The simulated positioning accuracy is tested in 25 separate coordinate points. For each point, the positioning is tested with five different mass loads. The mean positioning error of a manipulator decreased from 31.9 mm to 4.1 mm in the test points. This accuracy enables the use of flexible manipulators in the positioning of larger objects. The measured positioning accuracy is tested in 9 separate points using three different mass loads. The mean positioning error decreased from 10.6 mm to 4.7 mm and the maximum error from 27.5 mm to 11.0 mm.
Resumo:
Nanocellulose has much potential for enhancing the tensile strength of paper but it slows down significantly drainage, restricting its use in industrial scale. Main objective of the work was to find ways to improve the dewatering of nanocellulose-containing papers. The effects of cationic potato starch, microparticle system and filler addition on dewatering and such key properties as formation, tensile strength and air permeance of manufactured paper were studied. Test points had 0, 4 or 8 % CNF and 0, 15 or 30 % PCC content. Based on earlier studies, 25 mg/g starch dosage was added to some test points. Modern microparticle system, consisted of cationic polyacrylamide and amorphous silica, was used in few test points. Dosages for both components were 0.3 and 0.6 mg/g, following the recommendations of the supplier. Also, the influences of CNF and filler on drying behaviour after different stages (drainage, wet pressing and cylinder drying) were estimated. Following trends were observed. Starch does not have unambiguous influence on dewatering. In some cases, it improved drainage slightly but effects on the properties of end product were discovered small. Filler quickened dewatering but large proportions were noticed to be detrimental for the drainage, air permeance and tensile strength. Microparticle system improved drainage notably, especially if CNF dosage was high. In addition, microparticle system increased tensile strength and decreased air permeance. However, its effects on formation were detrimental. Dewatering of nanocellulose-containing furnishes is treatable up to a certain point. In the end, such drainage times that were measured from test points which consisted only of pure kraft pulps are awkward to reach.
Resumo:
Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found. © 2012 The Authors.
Resumo:
With the ever increasing demands for high complexity consumer electronic products, market pressures demand faster product development and lower cost. SoCbased design can provide the required design flexibility and speed by allowing the use of IP cores. However, testing costs in the SoC environment can reach a substantial percent of the total production cost. Analog testing costs may dominate the total test cost, as testing of analog circuits usually require functional verification of the circuit and special testing procedures. For RF analog circuits commonly used in wireless applications, testing is further complicated because of the high frequencies involved. In summary, reducing analog test cost is of major importance in the electronic industry today. BIST techniques for analog circuits, though potentially able to solve the analog test cost problem, have some limitations. Some techniques are circuit dependent, requiring reconfiguration of the circuit being tested, and are generally not usable in RF circuits. In the SoC environment, as processing and memory resources are available, they could be used in the test. However, the overhead for adding additional AD and DA converters may be too costly for most systems, and analog routing of signals may not be feasible and may introduce signal distortion. In this work a simple and low cost digitizer is used instead of an ADC in order to enable analog testing strategies to be implemented in a SoC environment. Thanks to the low analog area overhead of the converter, multiple analog test points can be observed and specific analog test strategies can be enabled. As the digitizer is always connected to the analog test point, it is not necessary to include muxes and switches that would degrade the signal path. For RF analog circuits, this is specially useful, as the circuit impedance is fixed and the influence of the digitizer can be accounted for in the design phase. Thanks to the simplicity of the converter, it is able to reach higher frequencies, and enables the implementation of low cost RF test strategies. The digitizer has been applied successfully in the testing of both low frequency and RF analog circuits. Also, as testing is based on frequency-domain characteristics, nonlinear characteristics like intermodulation products can also be evaluated. Specifically, practical results were obtained for prototyped base band filters and a 100MHz mixer. The application of the converter for noise figure evaluation was also addressed, and experimental results for low frequency amplifiers using conventional opamps were obtained. The proposed method is able to enhance the testability of current mixed-signal designs, being suitable for the SoC environment used in many industrial products nowadays.
Resumo:
The use of QoS parameters to evaluate the quality of service in a mesh network is essential mainly when providing multimedia services. This paper proposes an algorithm for planning wireless mesh networks in order to satisfy some QoS parameters, given a set of test points (TPs) and potential access points (APs). Examples of QoS parameters include: probability of packet loss and mean delay in responding to a request. The proposed algorithm uses a Mathematical Programming model to determine an adequate topology for the network and Monte Carlo simulation to verify whether the QoS parameters are being satisfied. The results obtained show that the proposed algorithm is able to find satisfactory solutions.
Resumo:
Experimental work and analysis was done to investigate engine startup robustness and emissions of a flex-fuel spark ignition (SI) direct injection (DI) engine. The vaporization and other characteristics of ethanol fuel blends present a challenge at engine startup. Strategies to reduce the enrichment requirements for the first engine startup cycle and emissions for the second and third fired cycle at 25°C ± 1°C engine and intake air temperature were investigated. Research work was conducted on a single cylinder SIDI engine with gasoline and E85 fuels, to study the effect on first fired cycle of engine startup. Piston configurations that included a compression ratio change (11 vs 15.5) and piston geometry change (flattop vs bowl) were tested, along with changes in intake cam timing (95,110,125) and fuel pressure (0.4 MPa vs 3 MPa). The goal was to replicate the engine speed, manifold pressure, fuel pressure and testing temperature from an engine startup trace for investigating the first fired cycle for the engine. Results showed bowl piston was able to enable lower equivalence ratio engine starts with gasoline fuel, while also showing lower IMEP at the same equivalence ratio compared to flat top piston. With E85, bowl piston showed reduced IMEP as compression ratio increased at the same equivalence ratio. A preference for constant intake valve timing across fuels seemed to indicate that flattop piston might be a good flex-fuel piston. Significant improvements were seen with higher CR bowl piston with high fuel pressure starts, but showed no improvement with low fuel pressures. Simulation work was conducted to analyze initial three cycles of engine startup in GT-POWER for the same set of hardware used in the experimentations. A steady state validated model was modified for startup conditions. The results of which allowed an understanding of the relative residual levels and IMEP at the test points in the cam phasing space. This allowed selecting additional test points that enable use of higher residual levels, eliminating those with smaller trapped mass incapable of producing required IMEP for proper engine turnover. The second phase of experimental testing results for 2nd and 3rd startup cycle revealed both E10 and E85 prefer the same SOI of 240°bTDC at second and third startup cycle for the flat top piston and high injection pressures. E85 fuel optimal cam timing for startup showed that it tolerates more residuals compared to E10 fuel. Higher internal residuals drives down the Ø requirement for both fuels up to their combustion stability limit, this is thought to be direct benefit to vaporization due to increased cycle start temperature. Benefits are shown for an advance IMOP and retarded EMOP strategy at engine startup. Overall the amount of residuals preferred by an engine for E10 fuel at startup is thought to be constant across engine speed, thus could enable easier selection of optimized cam positions across the startup speeds.
Resumo:
The Palestine Exploration Fund (PEF) Survey of Western Palestine (1871-1877) is highly praised for its accuracy and completeness; the first systematic analysis of its planimetric accuracy was published by Levin (2006). To study the potential of these 1:63,360 maps for a quantitative analysis of land cover changes over a period of time, Levin has compared them to 20th century topographic maps. The map registration error of the PEF maps was 74.4 m using 123 control points of trigonometrical stations and a 1st order polynomial. The median RMSE of all control and test points (n = 1104) was 153.6 m. Following the georeferencing of each of the 26 sheets of the PEF maps of the Survey of Western Palestine, a mosaicked file has been created. Care should be taken when analysing historical maps, as it cannot be assumed that their accuracy is consistent at different parts or for different features depicted on them.