6 resultados para Tephritids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of any trapping system is highly dependent on the ability to accurately identify the specimens collected. For many fruit fly species, accurate identification (= diagnostics) using morphological or molecular techniques is relatively straightforward and poses few technical challenges. However, nearly all genera of pest tephritids also contain groups of species where single, stand-alone tools are not sufficient for accurate identification: such groups include the Bactrocera dorsalis complex, the Anastrepha fraterculus complex and the Ceratitis FAR complex. Misidentification of high-impact species from such groups can have dramatic consequences and negate the benefits of an otherwise effective trapping program. To help prevent such problems, this chapter defines what is meant by a species complex and describes in detail how the correct identification of species within a complex requires the use of an integrative taxonomic approach. Integrative taxonomy uses multiple, independent lines of evidence to delimit species boundaries, and the underpinnings of this approach from both the theoretical speciation literature and the systematics/taxonomy literature are described. The strength of the integrative approach lies in the explicit testing of hypotheses and the use of multiple, independent species delimitation tools. A case is made for a core set of species delimitation tools (pre- and post-zygotic compatibility tests, multi-locus phylogenetic analysis, chemoecological studies, and morphometric and geometric morphometric analyses) to be adopted as standards by tephritologists aiming to resolve economically important species complexes. In discussing the integrative approach, emphasis is placed on the subtle but important differences between integrative and iterative taxonomy. The chapter finishes with a case study that illustrates how iterative taxonomy applied to the B. dorsalis species complex led to incorrect taxonomic conclusions, which has had major implications for quarantine, trade, and horticultural pest management. In contrast, an integrative approach to the problem has resolved species limits in this taxonomically difficult group, meaning that robust diagnostics are now available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge about population fluctuation of fruit flies (Diptera: Tephritidae) is an important tool to be adopted in pest control. Thus, this research aimed to analyse the population fluctuation of adults of fruit flies and the infestation of larvae in fruits depending on the conventional and organic agricultural systems of guava production in the 2010/2011 harvest. For monitoring the adults of fruit flies, five yellow sticky traps were installed in each system. The infestation percentage and the calculation of the ratio number of larvae/number of fruits were determined at harvest by harvesting 10 mature fruits/plant, in ten plants, for each system. In organic system predominated Anastrepha spp., principally in the period when the fruits were ripening or ripe, represented by elevated infestation percentage, while the conventional system presented low population density of fruit flies, with reduced larvae infestation inside the fruits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the organisms acting in the natural biological control of tephritids, members of the family Braconidae are the most active form of natural parasite, and in Neotropical regions, members of Opiinae are the main control agents of Anastrepha. The objective of this work was to discover the percentage of parasitism and the species of braconid associated with fruit trees growing in cities on the southern coast of Bahia. During the period of August, 2005 to March, 2008, hosts fruits of fruit flies from several plant species were collected and from the fruits the following species of Anastrepha were obtained: A. fraterculus, A. obliqua, A. bahiensis, A. serpentina, A. sororcula and A. zenildae. Of the total of 838 specimens of braconids, 21.36% were of the species Utetes anastrephae (Viereck), obtained from yellow mombin, carambola, guava, mango and pitanga; 4.42% were of the species Asobara anastrephae (Muesebeck) obtained from the fruits of the yellow mombin, carambola and guava, and only one example of Opius bellus Gahan (0.12%) that came from a guava sample. The species Doryctobracon areolatus (Szepligeti) (74.10%) was predominant and emerged from puparia from all the host fruits collected, probably due to the greater efficiency of this species in locating tephritid larvae. The mean percentage of parasitism by Anastrepha spp. was 4.45%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. Results The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. Conclusions These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state (which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage (in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to review the role of the host marking pheromone (HMP) and its application in integrated management programs for the fruit flies. Initially the oviposition behavior of tephritids has been analyzed with emphasis on Ceratitis capitata. The deposition of HMP, which consists in the last stage of the oviposition behavior has been characterized and discussed about evolutive aspects and the biological meaning of the tephritidae communication through the HMP. Finally, the perspectives on the use of HMP in the integrated management of fruit flies have been discussed.