105 resultados para Tensoativos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum is a complex combination of various classes of hydrocarbons, with paraffinic, naphtenic and aromatic compounds being those more commonly found in its composition. The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, enhanced recovery methods are cited in applications where conventional techniques have proven to be little effective. The injection of surfactant solutions as an enhanced recovery method is advantageous in that surfactants are able to reduce the interfacial tensions between water and oil, thus augmenting the displacement efficiency and, as a consequence, increasing the recovery factor. This work aims to investigate the effects of some parameters that influence the surfactant behavior in solution, namely the type of surfactant, the critical micelle concentration (CMC) and the surface and interface tensions between fluids. Seawater solutions containing the surfactants PAN, PHN and PJN have been prepared for presenting lower interfacial tensions with petroleum and higher stability under increasing temperature and salinity. They were examined in an experimental apparatus designed to assess the recovery factor. Botucatu (Brazil) sandstone plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The plugs had porosity between 29.6 and 32.0%, with average effective permeability to water of 83 mD. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the petroleum industry, water is always present in the reservoir formation together with petroleum and natural gas and this fact provokes the production of water with petroleum, resulting in a great environmental impact. Several methods can be applied for treatment of oily waters, such as: gravitational vases, granulated media filtration systems, flotation process, centrifugation process and the use of hydrocyclones, which can also be used in a combined way. However, the flotation process has showed a great efficiency as compared with other methods, because these methods do not remove great part of the emulsified oil. In this work was investigated the use of surfactants derived from vegetable oils, OSS and OGS, as collectors, using the flotation process in a glass column with a porous plate filter in its base for the input of the gaseous steam. For this purpose, oil/water emulsions were prepared using mechanical stirring, with concentrations around 300 ppm. The air flow rate was set at 700 cm3/min and the porous plate filter used for the generation of the air bubbles has pore size varying from 16 to 40 Pm. The column operated at constant volume (1500mL). A new methodology has been developed to collect the samples, where, instead of collecting the water phase, it was collected the oil phase removed by the process in the top of the flotation column. It has been observed that it is necessary to find an optimum surfactant concentration to achieve enhanced removal efficiency. Being for OSS 1.275 mmol/L and for OGS 0.840 mmol/L, with removal efficiencies of 93% and 99%, respectively, using synthetic solutions. For the produced water, the removal in these concentrations was 75% for OSS and 65% for OGS. It is possible to remove oil from water in a flotation process using surfactants of high HLB, fact that is against the own definition of HLB (Hydrophile-Lipophile Balance). The interfacial tension is an important factor in the oil removal process using a flotation process, because it has direct interference in the coalescence of the oil drops. The spreading of the oil of the air bubble should be considered in the process, and for the optimum surfactant concentrations it reached a maximum value. The removal kinetics for the flotation process using surfactants in the optimum concentration has been adjusted according to a first order model, for synthetic water as for the produced water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing industrialization of the planet caused by globalization, it has become increasingly common to search for highly resistant and durable materials for many diverse branches of activities. Thus, production and demand for materials that meet these requirements have constantly increased with time. In view of this, stainless steel is presented as one of the materials which are suitable applications, due to many features that are interesting for several segments of the industry. Concerns of oil companies over heavy oil reservoirs have grown steadily for the last decades. Rheological properties of these oils impair their transport in conventional flow systems. This problem has created the need to develop technologies to improve flow and transport, reducing operation costs so as to enable oil production in the reservoir. Therefore, surfactant-based chemical systems are proposed to optimize transport conditions, effected by reduction of interfacial tensions, thereby enhancing the flow of oil in ducts and reducing load losses by friction. In order to examine such interactions, a study on the wettability of metallic surfaces has been undertaken, represented by measuring of contact angle of surfactant solutions onto flat plates of 304 stainless steel. Aqueous solutions of KCl, surfactants and mixtures of surfactants, with linear and aromatic hydrocarbon chain and ethoxylation degrees ranging between 20 to 100, have been tested. The wettability was assessed by means of a DSA 100 krüss goniometer. The influence of roughness on the wettability was also investigated by machining and polished the stainless steel plates with sandpapers of references ranging between 100 of 1200. The results showed that sanding and polishing plates result in decrease of wettability. As for the solutions, they have provided better wettability of the stainless steel than the KCl solutions tested. It was also been concluded that surfactant mixtures is an option to be considered, since they promote interactions that generate satisfactory contact angles for a good wettability on the stainless steel plate. Another conclusion refers to the influence of the ethoxylation degree of the nonionic surfactant molecules on wettability. It has been observed that contact angles decrease with decreasing ethoxylation degrees. This leads us to conclude that molecules with higher ethoxylation degree, being more hydrophobic, decrease the interaction of water with the ducts, thereby reducing friction and improving the flow

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonionic surfactants are composed of substances whose molecules in solution, does not ionize. The solubility of these surfactants in water due to the presence of functional groups that have strong affinity for water. When these surfactants are heated is the formation of two liquid phases, evidenced by the phenomenon of turbidity. This study was aimed to determine the experimental temperature and turbidity nonilfenolpoliethoxyled subsequently perform a thermodynamic modeling, considering the models of Flory-Huggins and the empirical solid-liquid equilibrium (SLE). The method used for determining the turbidity point was the visual method (Inoue et al., 2008). The experimental methodology consisted of preparing synthetic solutions of 0,25%, 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12,5%, 15%, 17% and 20% by weight of surfactant. The nonionic surfactants used according to their degree of ethoxylation (9.5, 10, 11, 12 and 13). During the experiments the solutions were homogenized and the bath temperature was gradually increased while the turbidity of the solution temperature was checked visually Inoue et al. (2003). These temperature data of turbidity were used to feed the models evaluated and obtain thermodynamic parameters for systems of surfactants nonilfenolpoliethoxyled. Then the models can be used in phase separation processes, facilitating the extraction of organic solvents, therefore serve as quantitative and qualitative parameters. It was observed that the solidliquid equilibrium model (ESL) was best represented the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is one of the most used metals in platingprocesses of galvanic industries. The presence of copper, a heavy metal, in galvanic effluents is harmful to the environment.The main objective of this researchwas the removal ofcopperfromgalvanic effluents, using for this purpose anionic surfactants. The removal process is based on the interaction between the polar head group of the anionic surfactant and the divalent copper in solution. The surfactants used in this study were derived from soybean oil (OSS), coconut oil (OCS), and sunflower oil (OGS). It was used a copper synthetic solution (280 ppm Cu+2) simulating the rinse water from a copper acid bath of a galvanic industry. It were developed 23and 32 factorial designs to evaluate the parameters that have influence in theremoval process. For each surfactant (OSS, OCS, and OGS), the independent variables evaluated were: surfactant concentration (1.25 to 3.75 g/L), pH (5 to 9) and the presence of an anionic polymer (0 to 0.0125 g/L).From the results obtained in the 23 factorial design and in the calculus for estimatingthe stoichiometric relationship between surfactants and copper in solution, it were developed new experimental tests, varying surfactant concentration in the range of 1.25 to 6.8 g/L (32 factorial design).The results obtained in the experimental designs were subjected to statistical evaluations to obtain Pareto charts and mathematical modelsfor Copper removal efficiency (%). The statistical evaluation of the 23 and 32factorial designs, using saponifiedcoconut oil (OCS), presented the mathematical model that best described the copper removal process.It can be concluded that OCS was the most efficient anionic surfactant, removing 100% of the copper present in the synthetic galvanic solution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high concentration of residual oil is one of the greatest problems found in petroleum mature fields. In these reservoirs, different enhanced oil recovery methods (EOR) can be used, highlighting the microemulsion injection. The microemulsion has showed to be efficient in petroleum recovery due to its ability to promote an efficient displacement of the petroleum, acting directly in the residual oil. In this way, this research has as objective the study of microemulsion systems obtained using a commercial surfactant (TP), determining microemulsion thermal stabilities and selecting points inside the pseudoternary phases diagram, evaluating its efficiencies and choosing the best system, that has the following composition: TP as surfactant (S), isopropyl alcohol as co-surfactant (C), kerosene as oil phase, water as aqueous phase, C/S ratio = 1, and 5% sodium p-toluenesulfonate as hydrotope; being observed the following parameters for the selection of the best pseudoternary phases diagram: C/S ratio, co-surfactant nature and addition of hydrotope to the system. The efficiency in petroleum recovery was obtained using two sandstone formation systems: Assu and Botucatu. The study of thermal stabilities showed that as the concentration of active matter in the system increased, the thermal stability also increased. The best thermal stability was obtained using point F (79.56 0C). The system that presented the best recovery percentile between the three selected (3) was composed by: 70% C/S, 2% kerosene and 28% water, with 94% of total recovery efficiency and 60% with microemulsion injection, using the Botucatu formation, that in a general way presented greater efficiencies as compared with the Assu one (81.3% of total recovery efficiency and 38.3% with microemulsion injection)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The WAT is the temperature at the beginning of the appearance of wax crystals. At this temperature the first wax crystals are formed by the cooling systems paraffin / solvents. Paraffins are composed of a mixture of saturated hydrocarbons of high molecular weight. The removal of petroleum from wells and the production lines means a surcharge on produced oil, thus solubilize these deposits formed due to modifications of thermodynamics has been a constant challenge for companies of oil exploration. This study combines the paraffin solubilization by microemulsion systems, the determination of WAT systems paraffin / solvent and performance of surfactant in reducing the crystallization. We used the methods: rheological and the photoelectric signal, validating the latter which was developed to optimize the data obtained due to sensitivity of the equipment used. Methods developed for description of wax precipitation are often in poor agreement with the experimental data, they tend to underestimate the amount of wax at temperatures below the turbidity point. The Won method and the Ideal solution method were applied to the WAT data obtained in solvent systems, best represented by the second interaction of Won method using the solvents naphtha, hexane and LCO. It was observed that the results obtained by WAT photoelectric signal when compared with the viscosity occur in advance, demonstrating the greatest sensitivity of the method developed. The ionic surfactant reduced the viscosity of the solvent systems as it acted modifying the crystalline structure and, consequently, the pour point. The curves show that the WAT experimental data is, in general, closer to the modeling performed by the method of Won than to the one performed by the ideal solution method, because this method underestimates the curve predicting the onset of paraffin hydrocarbons crystallization temperature. This occurs because the actual temperature measured was the crystallization temperature and the method proposes the fusion temperature measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonionic surfactants when in aqueous solution, have the property of separating into two phases, one called diluted phase, with low concentration of surfactant, and the other one rich in surfactants called coacervate. The application of this kind of surfactant in extraction processes from aqueous solutions has been increasing over time, which implies the need for knowledge of the thermodynamic properties of these surfactants. In this study were determined the cloud point of polyethoxylated surfactants from nonilphenolpolietoxylated family (9,5 , 10 , 11, 12 and 13), the family from octilphenolpolietoxylated (10 e 11) and polyethoxylated lauryl alcohol (6 , 7, 8 and 9) varying the degree of ethoxylation. The method used to determine the cloud point was the observation of the turbidity of the solution heating to a ramp of 0.1 ° C / minute and for the pressure studies was used a cell high-pressure maximum ( 300 bar). Through the experimental data of the studied surfactants were used to the Flory - Huggins models, UNIQUAC and NRTL to describe the curves of cloud point, and it was studied the influence of NaCl concentration and pressure of the systems in the cloud point. This last parameter is important for the processes of oil recovery in which surfactant in solution are used in high pressures. While the effect of NaCl allows obtaining cloud points for temperatures closer to the room temperature, it is possible to use in processes without temperature control. The numerical method used to adjust the parameters was the Levenberg - Marquardt. For the model Flory- Huggins parameter settings were determined as enthalpy of the mixing, mixing entropy and the number of aggregations. For the UNIQUAC and NRTL models were adjusted interaction parameters aij using a quadratic dependence with temperature. The parameters obtained had good adjust to the experimental data RSMD < 0.3 %. The results showed that both, ethoxylation degree and pressure increase the cloudy points, whereas the NaCl decrease

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drilling fluid used to assist in the drilling operation of oil wells, accumulates solids inherent in the formation as it is circulated in the well, interfering in the fluid performance during operation. It is discarded after use. The disposal of these fluids causes one of the most difficult environmental problems in the world. This study aims to promote liquid phase separation of drilling fluids, which have circulated in oil wells, and enable this recovered liquid to formulate a new fluid. For this, non-ionic surfactants were used in order to select the best outcome in phase separation. Five real water-based drilling fluids were utilized, which were collected directly from the fields of drilling oil wells, classified as polymeric fluids. The methodology used consisted in combining the fluid with surfactant and then subjecting it to a process of centrifugation or decantation. The decantating tests were scheduled through experimental planning 23 and 32, using as variables the percentage (%) of surfactant utilized and the stirring time in minutes. The surfactants used were ethoxylated nonylphenol and lauryl alcohol ethoxylated with different degrees of ethoxylation. Phase separation was monitored first by tests of stability, and subsequently by the height of the interface in beakers of 100 mL. The results showed that from the surfactants studied, the lauryl alcohol ethoxylated with 3 ethoxylation units has been the most effective in the phase separation process of the drilling fluids tested. The statistical tool used was of great industrial value regarding the programming phase separation in drilling fluids. In conclusion, the liquid phase separated using surfactant can be reused for a new formulation of drilling fluid with similar properties of a new fluid, assuring its efficiency. And in the resulting analysis it is also suggested that the adsorption is the mechanism that leads the phase separation, with surfactant adsorbing in the active solids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gallium is an important material used in the electronic industry whose demand in the world market is increasing in view of its potential applications. A selective technique is required to allow for the production of the metal, separated from aluminium. Due to the fact that microemulsions constitute an attractive alternative to metal extraction procedures, microemulsified systems have been employed as gallium-selective extraction agents. Two surfactants have been synthesized: sodium 12-N,N-diethylamino-9,10-dihydroxyestearate (AMINE) and saponified coconut oil (SCO), both produced from raw materials readily available in Northeastern Brazil. Also, the commercial extraction agent KELEX-100, conventionally used with the same purpose, has been used in this work for comparison. The optimization of the extraction process with microemulsions was carried out by investigating the influence of some parameters, namely the type of cosurfactant, the cosurfactant/surfactant (C/S) ratio, the pH and concentration of metals in the aqueous phase. Pseudoternary diagrams, which are representative of the microemulsified systems under study, have been constructed in order to establish the boundaries of the regions where the several Winsor systems are formed. An experimental planning methodology (Scheffé Net) has been used to optimize the extraction. The extraction percentage values were as high as 100% for gallium and 99.99% for aluminium for the system with KELEX-100; 96.6% for gallium and 98.8% for aluminium for the system containing AMINE; and 88% for gallium and 85% for aluminium for the system with SCO. The microemulsified system chosen for presenting the best results in gallium extraction was composed by SCO/isoamyl alcohol/kerosene/Bayer licquor with a C/S ratio of 28 and pH of the original aqueous phase of 6.0. The selectivity that has not been observed in the extraction stage was accomplished in the reextraction process using HCl. For the KELEX-100 system, gallium was reextracted at 100% with 6M HCl and aluminium was reextracted at 100% with 0.8M HCl. For the AMINE system, the reextraction percentages were also 100% for both metals, using 6M HCl for gallium and 0.5M HCl for aluminium. On the other hand, the reextraction percentages for the system with SCO were as high as 84% for gallium and 92% for aluminium, with HCl in the same concentrations as those used in the AMINE system. Finally, an optimized system was applied in the gallium extraction process employing a reciprocating perforated-plates extractor. As a result, the metal content was extracted at a recovery rate of 95% for gallium and 97% for aluminium

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diesel combustion form sulfur oxides that can be discharged into the atmosphere as particulates and primary pollutants, SO2and SO3, causing great damage to the environment and to human health. These products can be transformed into acids in the combustion chamber, causing damage to the engines. The worldwide concern with a clean and healthy environment has led to more restrictive laws and regulations regulating the emission levels of pollutants in the air, establishing sulfur levels increasingly low on fuels. The conventional methods for sulfur removal from diesel are expensive and do not produce a zero-level sulfur fuel. This work aims to develop new methods of removing sulfur from commercial diesel using surfactants and microemulsion systems. Its main purpose is to create new technologies and add economic viability to the process. First, a preliminary study using as extracting agent a Winsor I microemulsion system with dodecyl ammonium chloride (DDACl) and nonyl phenol ethoxylated (RNX95) as surfactant was performed to choose the surfactant. The RNX95 was chosen to be used as surfactant in microemulsioned systems for adsorbent surface modification and as an extracting agent in liquid-liquid extraction. Vermiculite was evaluated as adsorbent. The microemulsion systems applied for vermiculite surface modification were composed by RNX95 (surfactant), n-butanol (cosurfactant), n-hexane (oil phase), and different aqueous phases, including: distilled water (aqueous phase),20ppm CaCl2solution, and 1500ppm CaCl2solution. Batch and column adsorption tests were carried out to estimate the ability of vermiculite to adsorb sulfur from diesel. It was used in the experiments a commercial diesel fuel with 1,233ppm initial sulfur concentration. The batch experiments were performed according to a factorial design (23). Two experimental sets were accomplished: the first one applying 1:2 vermiculite to diesel ratio and the second one using 1:5 vermiculite to diesel ratio. It was evaluated the effects of temperature (25°C and 60°C), concentration of CaCl2in the aqueous phase (20ppm and 1500ppm), and vermiculite granule size (65 and 100 mesh). The experimental response was the ability of vermiculite to adsorb sulfur. The best results for both 1:5 and 1:2 ratios were obtained using 60°C, 1500ppm CaCl2solution, and 65 mesh. The best adsorption capacities for 1:5 ratio and for 1:2 ratio were 4.24 mg sulfur/g adsorbent and 2.87 mg sulfur/g adsorbent, respectively. It was verified that the most significant factor was the concentration of the CaCl2 solution. Liquid-liquid extraction experiments were performed in two and six steps using the same surfactant to diesel ratio. It was obtained 46.8% sulfur removal in two-step experiment and 73.15% in six-step one. An alternative study, for comparison purposes, was made using bentonite and diatomite asadsorbents. The batch experiments were done using microemulsion systems with the same aqueous phases evaluated in vermiculite study and also 20ppm and 1500 ppm BaCl2 solutions. For bentonite, the best adsorption capacity was 7.53mg sulfur/g adsorbent with distilled water as aqueous phase of the microemulsion system and for diatomite the best result was 17.04 mg sulfur/g adsorbent using a 20ppm CaCl2solution. The accomplishment of this study allowed us to conclude that, among the alternatives tested, the adsorption process using adsorbents modified by microemulsion systems was considered the best process for sulfur removal from diesel fuel. The optimization and scale upof the process constitutes a viable alternative to achieve the needs of the market

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing utilization of surfactants in several different areas of industry has led to an increase on the studies involving solutions containing this type of molecules. Due to its amphiphilic nature, its molecule presents one polar part and one nonpolar end, which easily interacts with other molecules, being able to modify the media properties. When the concentration in which its monomers are saturated, the airliquid system interface is reached, causing a decrease in interfacial tension. The surfactants from pure fatty acids containing C8, C12 and C16 carbonic chains were synthesized in an alcoholic media using sodium hydroxide. They were characterized via thermal analysis (DTA and DTG) and via infrared spectroscopy, with the intention of observing their purity. Physical and chemical properties such as superficial tension, critical micelle concentration (c.m.c), surfactant excess on surface and Gibbs free energy of micellization were determined in order to understand the behaviour of these molecules with an aqueous media. Pseudo-ternary phase diagrams were obtained aiming to limit the Windsor equilibria conditions so it could be possible to understand how the surfactants carbonic chain size contributes to the microemulsion region. Solutions with known concentrations were prepared to study how the surfactants can influence the dynamic light scattering spectroscopy (DLS) and how the diffusion coefficient is influenced when the media concentration is altered. The results showed the variation on the chain size of the studied surfactant lipophilic part allows the conception of surfactants with similar interfacial properties, but dependent on the size of the lipophilic part of the surfactant. This variation causes the surfactant to have less tendency of microemulsionate oil in water. Another observed result is that the n-alcanes molecule size promoted a decrease on the microemulsion region on the obtained phase diagrams

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion inhibition efficiency of saponified coconut oil (SCO) and sodium dodecilbenzene sulfonate (DBS) surfactants in AISI 1020 carbon steel was evaluated by electrochemical methods. These surfactants were also evaluated as microemulsion systems (SCO-ME and DBS-ME), of O/W type (water-rich microemulsion), in a Winsor IV region. They were obtained according to the following composition: 15% SCO, 15% butanol (30% Co-surfactant/Surfactant C/T), 10% organic phase (FO, kerosene) and 60% aqueous phase (FA). These systems were also used to solubilize the following nitrogenated substances: Diphenylcarbazide (DC), 2,4-dinitro-phenyl-thiosemicarbazide (TSC) and the mesoionic type compound 1,3,4-triazolium-2-thiolate (MI), that were investigated with the purpose of evaluating their anticorrosive effects. Comparative studies of carbon steel corrosion inhibition efficiencies of free DBS and DBS-ME, in brine and acidic media (0.5%), showed that DBS presents better inhibition results in acidic media (free DBS, 89% and DBS-ME, 93%). However, the values obtained for DBS in salted solution (72% free DBS and 77% DBS-ME) were similar to the ones observed for the SCO surfactant in brine (63% free SCO and 74% SCO-ME). Analysis of corrosion inhibition of the nitrogenated substances that were solubilized in the SCO-ME microemulsion system by the linear polarization method in brine (0.5% NaCl) showed that such compounds are very efficient an corrosion inhibitors [DC-ME-SCO (92%), TSC-ME-SCO (93%) and MI-ME-SCO (94%)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combating pollution of soils is a challenge that has concerned researchers from different areas and motivated the search for technologies that aim the recovery of degraded soils. Literature shows numerous processes that have been proposed with the intent of remediating soils contaminated by oils and other by-products of the oil industry, considering that the processes available have, generally, high operating costs, this work proposes a costeffective alternative to the treatment of Diesel-contaminated soils. The washing solutions were prepared using water as aqueous phase, the saponified coconut oil (OCS) as surfactant and n-butanol as co-surfactant. In this study, the soil was characterized by physical and chemical analyses. The study of diesel desorption from the soil was held in bath, using hexane and washing solutions, which had 10 and 20 wt.% active matter (AM - co-surfactant/surfactants) respectively. The study of the influence of active matter concentration and temperature in bath agitated used an experimental planning. The experiment also developed a system of percolation in bed to wash the soil and studied the influence of the concentration of active substance and volume of washing solution using an experimental planning. The optimal times to achieve hexane extraction were 30 and 180 min, while the best results using a 10% AM was 60 min and using a 20% AM was 120 min. The results of the experimental planning on bath showed that the maximum diesel removal was obtained when at a 20 wt.% of AM and under 50 °C, removing 99.92% of the oil. As for experiments in the system of percolation soil bed, the maximum diesel removal was high when the volume of the washing solution was of 5 L and the concentration of 20% AM. This experiment concluded that the concentration of AM and the temperature were vital to bath experiments for diesel removal, while in the system of percolation soil bed only concentration of AM influenced the soil remediation