932 resultados para Tensile tests
Resumo:
Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A major aspect in geosynthetics creep analysis is the load level applied to the specimen, usually referred as a percentage of the geosynthetic ultimate tensile strength (UTS). Since both tensile and creep standard tests are performed with in-isolation specimens, they may not reproduce the possibly significant effect of soil-geosynthetic interaction. A new creep testing machine was recently developed and successfully addressed this concern. However, further developments allowed tensile tests to be performed in the same conditions used in nonconventional creep ones. This paper presents the results of nonconventional tensile tests performed with a woven biaxial polyester geogrid. They were used to define its UTS in the same conditions employed in creep tests performed with the new equipment. Despite changes in tensile curves shapes were found, the UTS from confined, accelerated and confined-accelerated tensile tests were quite similar to those obtained with standard tensile test procedure.
Resumo:
In South and Southeast Asia, postharvest loss causes material waste of up to 66% in fruits and vegetables, 30% in oilseeds and pulses, and 49% in roots and tubers. The efficiency of postharvest equipment directly affects industrial-scale food production. To enhance current processing methods and devices, it is essential to analyze the responses of food materials under loading operations. Food materials undergo different types of mechanical loading during postharvest and processing stages. Therefore, it is important to determine the properties of these materials under different types of loads, such as tensile, compression, and indentation. This study presents a comprehensive analysis of the available literature on the tensile properties of different food samples. The aim of this review was to categorize the available methods of tensile testing for agricultural crops and food materials to investigate an appropriate sample size and tensile test method. The results were then applied to perform tensile tests on pumpkin flesh and peel samples, in particular on arc-sided samples at a constant loading rate of 20 mm min-1. The results showed the maximum tensile stress of pumpkin flesh and peel samples to be 0.535 and 1.45 MPa, respectively. The elastic modulus of the flesh and peel samples was 6.82 and 25.2 MPa, respectively, while the failure modulus values were 14.51 and 30.88 MPa, respectively. The results of the tensile tests were also used to develop a finite element model of mechanical peeling of tough-skinned vegetables. However, to study the effects of deformation rate, moisture content, and texture of the tissue on the tensile responses of food materials, more investigation needs to be done in the future.
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).
Resumo:
The present study describes the course of microstructure evolution during accumulative roll bonding (ARB) of dissimilar aluminum alloys AA2219 and AA5086. The two alloys were sandwiched as alternate layers and rolled at 300 degrees C up to 8 passes with 50% height reduction per pass. A strong bonding between successive layers accompanied by substantial grain refinement (similar to 200-300 nm) is achieved after 8 passes of ARB. The processing schedule has successfully maintained the iso-strain condition up to 6 cycles between the two alloys. Afterwards, the fracture and fragmentation of AA5086 layers dominate the microstructure evolution. Mechanical properties of the 8 pass ARB processed material were evaluated in comparison to the two starting alloy sheets via room temperature tensile tests along the rolling direction. The strength of the 8 pass ARB processed material lies between that of the two starting alloys while the ductility decreases after ARB than that of the two constituent starting alloys. These differences in mechanical behavior have been attributed to the microstructural aspects of the individual layer and the fragmentation process. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The effect of thermal exposure on the tensile properties of aluminium borate whisker reinforced 6061 aluminium alloy composite was studied. The interfacial reaction was investigated by TEM and the mechanical properties were studied using tensile tests. The results indicated that the interfacial reaction had an influence on the mechanical properties of the composite, so that the maxima of Young’s modulus and ultimate tensile strength of the composite after exposure at 500?C for 10 h were obtained for the optimum degree of interfacial reaction. The yield strength,however, was not only affected by the interfacial state but also by many other factors.
Resumo:
The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.
Resumo:
Blends of a poly(ether sulfone) (PES) and a polycarbonate (PC) were prepared by melt-mixing and were studied by tensile tests, differential scanning calorimetry, dynamic mechanical analysis, density measurements and transmission electron microscopy (TEM). The blends were found to be two-phase systems and an interfacial layer was presumed to be formed between two phases, which was verified by TEM. A synergism of elongation at break and tensile modulus was shown in PES/PC blends. The effects of the crosshead speed on the mechanical properties were discussed for blends with different PES/PC weight ratios.
Resumo:
Blends of poly(ether sulphone) (PES) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PES blends are mechanically compatible. SEM study revealed that the blends are not homogeneous and the polymers are immiscible on the segmental level. However, the dispersions of the blends are rather fine. The interfaces between the two phases are excellently bonded; PEI and PES appear to interact well.
Resumo:
Blends of phenolphthalein poly(ether ether ketone) (PEK-C) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). It was found that the tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PEK-C blends are mechanically compatible. SEM study shows no evidence of phase separation, supporting the idea that the blends are compatible.
Resumo:
Injection-molded short- and long-glass fiber/polyamide 6,6 composites were subjected to tensile tests. To measure the effectiveness of the fibers in reinforcing the composites, a computational approach was employed to compute the fiber– matrix ISS, orientation factor, reinforcement efficiency, tensile-, and fiber length-related properties. Although the LFCs showed great improvement in fiber characteristics compared to the SFCs, enhancement in tensile properties was small, which is believed to be due to the larger fiber diameter. Kelly–Tyson model provides good approximation for the computation of ISS and tensile-related properties.
Resumo:
In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test.
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
This article reports on a series of experiments with polyethylene terepthalate (PET) treated in a radio frequency plasma reactor using argon and oxygen as a gas fuel, for treatment times equal to 5 s, 20 s, 30 s, and 100 s. The mechanical strength modification of PET fibers, evaluated by tensile tests on monofilaments, showed that oxygen and argon plasma treatment resulted in a decrease in the average tensile strength compared with the untreated fibers. This reduction in tensile strength is more significant for argon plasma and is very sensitive to the treatment time for oxygen plasma. Scanning electron microscopy (SEM) used to analyze the effects of cold plasma treatment on fiber surfaces indicates differences in roughness profiles depending on the type of treatments, which were associated with variations in mechanical strength. Differences in the roughness profile, surveyed through an image analysis method, provided the distance of roughness interval, D-ri. This parameter represents the number of peaks contained in a unit length and was introduced to correlate fiber surface condition, before and after cold plasma treatments, and average tensile strength. Statistical analysis of experimental data, using Weibull cumulative distribution and linear representation, was performed to explain influences of treatment time and environmental effects on mechanical properties. The shape parameter, alpha, and density parameter, beta, from the Weibull distribution function were used to indicate the experimental data range and to confirm the mechanical performance obtained experimentally.