965 resultados para Tensile stress
Resumo:
This study describes the growth of a low-temperature AlN interlayer for crack-free GaN growth on Si(111). It is demonstrated that, in addition to the lower growth temperature, growth of the AlN interlayer under Al-rich conditions is a critical factor for crack-free GaN growth on Si(111) substrates. The effect of the AlN interlayer thickness and NH3/TMA1 ratios on the lattice constants of subsequently grown high temperature GaN was investigated by X-ray triple crystal diffraction. The results show that the elimination of micro-cracks is related to the reduction of the tensile stress in the GaN epitaxial layers. This was also coincident with a greater number of pits formed in the AlN interlayer grown under Al rich conditions. It is proposed that these pits act as centers for the generation of misfit dislocations, which in turn leads to the reduction of tensile stress. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
By realizing in thin films a tensile stress state, superconductivity of 13 K was introduced into FeTe, a nonsuperconducting parent compound of the iron pnictides and chalcogenides, with a transition temperature higher than that of its superconducting isostructural counterpart FeSe. For these tensile stressed films, superconductivity is accompanied by a softening of the first-order magnetic and structural phase transition, and also, the in-plane extension and out-of-plane contraction are universal in all FeTe films independent of the sign of the lattice mismatch, either positive or negative. Moreover, the correlations were found to exist between the transition temperatures and the tetrahedra bond angles in these thin films.
Resumo:
Distortion is one type of defect in the weld, which is troublesome for some reasons, especially in thin plate welding. Distortion was found in fibre laser welding processing for 0.7mm thickness Ti6Al4V plate. The purpose of this paper is to understand and evaluate the effect of distortion on stress level by FEA and tensile test. A group of 0.7mm Ti6Al4V plates welded using continuous wave fibre laser. FEA models were established for fibre laser welded Ti6Al4V in abaqus 6.7. © (2011) Trans Tech Publications.
Resumo:
In South and Southeast Asia, postharvest loss causes material waste of up to 66% in fruits and vegetables, 30% in oilseeds and pulses, and 49% in roots and tubers. The efficiency of postharvest equipment directly affects industrial-scale food production. To enhance current processing methods and devices, it is essential to analyze the responses of food materials under loading operations. Food materials undergo different types of mechanical loading during postharvest and processing stages. Therefore, it is important to determine the properties of these materials under different types of loads, such as tensile, compression, and indentation. This study presents a comprehensive analysis of the available literature on the tensile properties of different food samples. The aim of this review was to categorize the available methods of tensile testing for agricultural crops and food materials to investigate an appropriate sample size and tensile test method. The results were then applied to perform tensile tests on pumpkin flesh and peel samples, in particular on arc-sided samples at a constant loading rate of 20 mm min-1. The results showed the maximum tensile stress of pumpkin flesh and peel samples to be 0.535 and 1.45 MPa, respectively. The elastic modulus of the flesh and peel samples was 6.82 and 25.2 MPa, respectively, while the failure modulus values were 14.51 and 30.88 MPa, respectively. The results of the tensile tests were also used to develop a finite element model of mechanical peeling of tough-skinned vegetables. However, to study the effects of deformation rate, moisture content, and texture of the tissue on the tensile responses of food materials, more investigation needs to be done in the future.
Resumo:
Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.
Resumo:
The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.
Resumo:
The effect of deposition temperature on residual stress evolution with temperature in Ti-rich NiTi films deposited on silicon substrates was studied. Ti-rich NiTi films were deposited on 3? Si (100) substrates by DC magnetron sputtering at three deposition temperatures (300, 350 and 400 degrees C) with subsequent annealing in vacuum at their respective deposition temperatures for 4 h. The initial value of residual stress was found to be the highest for the film deposited and annealed at 400 degrees C and the lowest for the film deposited and annealed at 300 degrees C. All the three films were found to be amorphous in the as-deposited and annealed conditions. The nature of the stress response with temperature on heating in the first cycle (room temperature to 450 degrees C) was similar for all three films although the spike in tensile stress, which occurs at similar to 330 degrees C, was significantly higher in the film deposited and annealed at 300 degrees C. All the films were also found to undergo partial crystallisation on heating up to 450 degrees C and this resulted in decrease in the stress values around 5560 degrees C in the cooling cycle. The stress response with temperature in the second thermal cycle (room temperature to 450 degrees C and back), which is reflective of the intrinsic film behaviour, was found to be similar in all cases and the elastic modulus determined from the stress response was also more or less identical. The three deposition temperatures were also not found to have a significant effect on the transformation characteristics of these films such as transformation start and finish temperatures, recovery stress and hysteresis.
Resumo:
Understanding and controlling growth stress is a requisite for integrating oxides with Si. Yttria stabilized zirconia (YSZ) is both an important functional oxide and a buffer layer material needed for integrating other functional oxides. Stress evolution during the growth of (100) and (111) oriented YSZ on Si (100) by radio frequency and reactive direct current sputtering has been investigated with an in-situ monitor and correlated with texture evolution. Films nucleated at rates <5 nm/min are found to be (111) oriented and grow predominantly under a compressive steady state stress. Films nucleated at rates >20 nm/min are found to be (100) oriented and grow under tension. A change in growth rate following the nucleation stage does not change the orientation. The value of the final steady state stress varies from -4.7 GPa to 0.3 GPa. The in-situ studies show that the steady state stress generation is a dynamic phenomenon occurring at the growth surface and not decided at film nucleation. The combination of stress evolution and texture evolution data shows that the adatom injection into the grain boundaries is the predominant source of compressive stress and grain boundary formation at the growth surface is the source of tensile stress. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757924]
Resumo:
The synergistic effect of compressive growth stresses and reactor chemistry, silane presence, on dislocation bending at the very early stages of GaN growth has been studied using in-situ stress measurements and cross-sectional transmission electron microscopy. A single 100 nm Si-doped GaN layer is found to be more effective than a 1 mu m linearly graded AlGaN buffer layer in reducing dislocation density and preventing the subsequent layer from transitioning to a tensile stress. 1 mu m crack-free GaN layers with a dislocation density of 7 x 10(8)/cm(2), with 0.13 nm surface roughness and no enhancement in n-type background are demonstrated over 2 inch substrates using this simple transition scheme. (C) 2013 AIP Publishing LLC.
Resumo:
Contact damage in curved interface nano-layeredmetal/nitride (150 (ZrN)/10 (Zr) nm) multilayer is investigated in order to understand the role of interface morphology on contact damage under indentation. A finite element method (FEM) model was formulated with different wavelengths of 1000 nm, 500 nm, 250 nm and common height of 50 nm, which gives insight on the effect of different curvature on stress field generated under indentation. Elastic-plastic properties were assigned to the metal layer and substrate while the nitride layer was assigned perfectly elastic properties. Curved interface multilayers show delamination along the metal/nitride interface and vertical cracks emanating from the ends of the delamination. FEM revealed the presence of tensile stress normal to the interface even under the contact, along with tensile radial stresses, both present at the valley part of the curve, which leads to vertical cracks associated with interfacial delamination. Stress enhancement was seen to be relatively insensitive to curvature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.
Resumo:
An in situ study of stress evolution and mechanical behavior of germanium as a lithium-ion battery electrode material is presented. Thin films of germanium are cycled in a half-cell configuration with lithium metal foil as counter/reference electrode, with 1M LiPF6 in ethylene carbonate, diethyl carbonate, dimethyl carbonate solution (1:1:1, wt%) as electrolyte. Real-time stress evolution in the germanium thin-film electrodes during electrochemical lithiation/delithiation is measured by monitoring the substrate curvature using the multi-beam optical sensing method. Upon lithiation a-Ge undergoes extensive plastic deformation, with a peak compressive stress reaching as high as -0.76 +/- 0.05 GPa (mean +/- standard deviation). The compressive stress decreases with lithium concentration reaching a value of approximately -0.3 GPa at the end of lithiation. Upon delithiation the stress quickly became tensile and follows a trend that mirrors the behavior on compressive side; the average peak tensile stress of the lithiated Ge samples was approximately 0.83 GPa. The peak tensile stress data along with the SEM analysis was used to estimate a lower bound fracture resistance of lithiated Ge, which is approximately 5.3 J/m(2). It was also observed that the lithiated Ge is rate sensitive, i.e., stress depends on how fast or slow the charging is carried out. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.