907 resultados para Tensile Properties
Resumo:
For some applications for fluoropolymers they must be subjected to high-energy radiation, e.g., when they are grafted with styrene using an irradiation method to produce fuel cell membranes or matrix supports for combinatorial chemistry. In some of these applications they may be subjected to mechanical stress or elevated temperature, so it is important to elucidate the effects of the radiolysis on these properties. In the present work the effect of gamma-radiolysis on the glass transition, melting behavior, and thermal stability of PFA has been studied as well as the effect of the radiolysis on the tensile properties of the polymer.
Resumo:
In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.
Resumo:
Stone groundwood (SGW) is a fibrous matter commonly prepared in a high yield process, and mainly used for papermaking applications. In this work, the use of SGW fibers is explored as reinforcing element of polypropylene (PP) composites. Due to its chemical and superficial features, the use of coupling agents is needed for a good adhesion and stress transfer across the fiber-matrix interface. The intrinsic strength of the reinforcement is a key parameter to predict the mechanical properties of the composite and to perform an interface analysis. The main objective of the present work was the determination of the intrinsic tensile strength of stone groundwood fibers. Coupled and non-coupled PP composites from stone groundwood fibers were prepared. The influence of the surface morphology and the quality at interface on the final properties of the composite was analyzed and compared to that of fiberglass PP composites. The intrinsic tensile properties of stone groundwood fibers, as well as the fiber orientation factor and the interfacial shear strength of the current composites were determined
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
Morphology and deformation mechanisms and tensile properties of tetrafunctional multigraft (MG) polystrene-g-polyisoprene (PS-g-PI) copolymers were investigated dependent on PS volume fraction and number of branch points. The combination of various methods such as TEM, real time synchrotron SAXS, rheo-optical FTIR, and tensile tests provides comprehensive information at different dimension levels.TEMand SAXS studies revealed that the number of branch points has no obvious influence on the microphase-separated morphology of tetrafunction MG copolymers with 16 wt % PS. But for tetrafunctional MG copolymers with 25 wt % PS, the size and integrity of PS microdomains decrease with increasing number of branch point. The deformation mechanisms ofMGcopolymers are highly related to the morphology. Dependent on the microphase-separated morphology and integrity of the PS phase, the strain-induced orientation of the PS phase is at different size scales. Polarized FT-IR spectra analysis reveals that, for all investigated MG copolymers, the PI phase shows strain-induced orientation along SD at molecular scale. The proportion of the PI block effectively bridging PS domains controls the tensile properties of the MGcopolymers at high strain, while the stress-strain behavior in the low-mediate strain region is controlled by the continuity of PS microdomains. The special molecular architecture, which leads to the higher effective functionality of PS domains and the higher possibility for an individual PI backbone being tethered with a large number of PS domains, is proposed to be the origin of the superelasticity for MG copolymers.
Resumo:
The mechanical behavior and microstructure of minor ampullate gland silk (miS) of two orb-web spinning species, Argiope trifasciata and Nephila inaurata, were extensively characterized, enabling detailed comparison with other silks. The similarities and differences exhibited by miS when compared with the intensively studied major ampullate gland silk (MAS) and silkworm (Bombyx mori) silk offer a genuine opportunity for testing some of the hypotheses proposed to correlate microstructure and tensile properties in silk. In this work, we show that miSs of different species show similar properties, even when fibers spun by spiders that diverged over 100 million years are compared. The tensile properties of miS are comparable to those of MAS when tested in air, significantly in terms of work to fracture, but differ considerably when tested in water. In particular, miS does not show a supercontraction effect and an associated ground state. In this regard, the behavior of miS in water is similar to that of B. mori silk, and it is shown that the initial elastic modulus of both fibers can be explained using a common model. Intriguingly, the microstructural parameters measured in miS are comparable to those of MAS and considerably different from those found in B. mori. This fact suggests that some critical microstructural information is still missing in our description of silks, and our results suggest that the hydrophilicity of the lateral groups or the large scale organization of the sequences might be routes worth exploring.
Resumo:
True stress-true strain curves of naturally spun viscid line fibers retrieved directly from the spiral of orb-webs built by Argiope trifasciata spiders were measured using a novel methodology. This new procedure combines a method for removing the aqueous coating of the fibers and a technique that allows the accurate measurement of their cross sectional area. Comparison of the tensile behaviour of different samples indicates that naturally spun viscid lines show a large variability, comparable to that of other silks, such as major ampullate gland silk and silkworm silk. Nevertheless, application of a statistical analysis allowed identifying two independent parameters that underlie the variability and characterize the observed range of true stress-true strain curves. Combination of this result with previous mechanical and microstructural data suggested the assignment of these two independent effects to the degree of alignment of the protein chains and to the local relative humidity which, in turn, depends on the composition of the viscous coating and on the external environmental conditions.
Resumo:
Tensile tests were carried out using specimens of 2009 aluminium alloy reinforced by either SiC whiskers or particles. The size distributions of the whiskers and particles in the matrix were obtained by image analysis. It was found that failure was a result of uniform void nucleation and coalescence in the as fabricated composites, or a result of fast crack propagation initiated by a flaw developed at clusters of SiC in the aged or stretched and aged composites. The strengths of the as fabricated composites were estimated based on the results of image analysis using continuum mechanics and dislocation theories. The estimation indicated that the tensile strengths are largely contributed to by composite strengthening, supplemented by residual dislocation strengthening and work hardening. Owing to the flaw controlled failure, the tensile strengths of the aged or stretched and aged composites were independent of aging time, aging temperature, and the amount of stretching. The elastic moduli of the composites were estimated using the Halpin-Tsai model and a good correlation was found between the measured and estimated moduli. © 1996 The Institute of Materials.
Resumo:
The aging responses of 2124 Al-SiC p metal matrix composite (MMC) and unreinforced matrix alloy are studied and related to variations in tensile properties. The MMC is aged from Wo starting conditions: (i) stretched and naturally aged and (ii) re-solution treated. Accelerated aging occurs in both MMC conditions compared with unreinforced alloy. Tensile strengths and elastic moduli are improved in the MMC compared with the alloy, but ductility is reduced. Stretched MMC exhibits higher strength but lower ductility and modulus than re-solutioned MMC. The re-solutioned MMC fails by microvoid coalescence in low aging conditions, and by void nucleation and shear in high aging conditions. Failure of the stretched MMC initiates at the surface at specimen shoulders, illustrating the increased notch sensitivity of this condition, and propagates via a zigzag shear fracture mode. Zigzag facet size increases on gross aging. Particle fracture occurs during tensile failure, but also before testing as a result of the manufacturing process. © 1995 The Institute of Materials.
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
Automated fibre placement (AFP) enables the trajectory of unidirectional composite tape to be optimized, but laying down complex shapes with this technology can result in the introduction of defects. The aim of this experimental study is to investigate the influence of gaps and overlaps on the microstructure and tensile properties of carbon-epoxy laminates. First, a comparison between a hand-layup and AFP layup, draped and cured under the same conditions, shows equivalent microstructures and tensile properties. This provides the reference values for the study. Then, gap and overlap embedded defects (more or less severe) are introduced during manufacturing, on two cross-ply layups [(0°/(90°)5/0°] and [(90°/0°)2/90°]. Autoclave cure without a caul plate results in local thickness variation and microstructural changes which depend on the defect type. This has a strong influence on mechanical performance. Use of a caul plate avoids these variations and in this case embedded defects hardly affect tensile properties.
Resumo:
In this this study, glycerol content and its incorporation method on tensile and barrier properties of biodegradable films (BF) based on cassava starch were analyzed. ANOVA showed that the glycerol incorporation method did not influence the results (P > 0.05), however the glycerol content influenced significantly the tensile and barrier properties of the films (P < 0.05). Films prepared with lower glycerol content presented better tensile and barrier properties than films with higher content. Films were then prepared with addition of clay nanoparticles and their tensile and barrier properties and glass transition temperature were measured. ANOVA indicated that both glycerol and clay nanoparticles influenced significantly the tensile and barrier properties (P < 0.05), diminishing film permeability when clay nanoparticles were present, while the glass transition temperature was not influenced (P > 0.05). (C) 2011 Elsevier Ltd. All rights reserved.