39 resultados para Tenebrionidae
Resumo:
Distributions of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in litter of a compacted earth floor broiler house in southeastern Queensland, Australia, were studied over two flocks. Larvae were the predominant stage recorded. Significantly low densities occurred in open locations and under drinker cups where chickens had complete access, whereas high densities were found under feed pans and along house edges where chicken access was restricted. For each flock, lesser mealworm numbers increased at all locations over the first 14 d, especially under feed pans and along house edges, peaking at 26 d and then declining over the final 28 d. A life stage profile per flock was devised that consisted of the following: beetles emerge from the earth floor at the beginning of each flock, and females lay eggs, producing larvae that peak in numbers at 3 wk; after a further 3 to 4 wk, larvae leave litter to pupate in the earth floor, and beetles then emerge by the end of the flock time. Removing old litter from the brooder section at the end of a flock did not greatly reduce mealworm numbers over the subsequent flock, but it seemed to prevent numbers increasing, while an increase in numbers in the grow-out section was recorded after reusing litter. Areas under feed pans and along house edges accounted for 5% of the total house area, but approximately half the estimated total number of lesser mealworms in the broiler house occurred in these locations. The results of this study will be used to determine optimal deployment of site-specific treatments for lesser mealworm control.
Resumo:
Resistance to cyfluthrin in broiler farm populations of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in eastern Australia was suspected to have contributed to recent control failures. In 2000-2001, beetles from 11 broiler farms were tested for resistance by comparing them to an insecticide-susceptible reference population by using topical application. Resistance was detected in almost all beetle populations (up to 22 times the susceptible at the LC50), especially in southeastern Queensland where more cyfluthrin applications had been made. Two from outside southeastern Queensland were found to be susceptible. Dose-mortality data generated from the reference population over a range of cyflutbrin concentrations showed that 0.0007% cyfluthrin at a LC99.9 level could be used as a convenient dose to discriminate between susceptible and resistant populations. Using this discriminating concentration, from 2001 to 2005, the susceptibilities of 18 field populations were determined. Of these, 11 did not exhibit complete mortality at the discriminating concentration (mortality range 2.8-97.7%), and in general, cyfluthrin resistance was directly related to the numbers of cyfluthrin applications. As in the full study, populations outside of southeastern Queensland were found to have lower levels of resistance or were susceptible. One population from an intensively farmed broiler area in southeastern Queensland exhibited low mortality despite having no known exposure to cyfluthrin. Comparisons of LC50 values of three broiler populations and a susceptible population, collected in 2000 and 2001 and recollected in 2004 and 2005 indicated that values from the three broiler populations had increased over this time for all populations. The continued use of cyfluthrin for control of A. diaperinus in eastern Australia is currently under consideration.
Resumo:
Spinosad was proposed as a potential chemical for control of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses after the detection of strong cyfluthrin resistance in many beetle populations. In 2004-2006, spinosad susceptibility of 13 beetle populations from eastern and southern Australian broiler houses and a cyfluthrin/fenitrothion-resistant reference population was determined using topical application, and was compared with the susceptibility of an insecticide-susceptible reference population. Comparisons of dose-response curves and baseline data showed that all populations, including the insecticide-susceptible population, were roughly equivalent in their response to spinosad, indicating no preexisting spinosad resistance. Two field populations, including the resistant reference population, which had confirmed cyfluthrin/fenitrothion- resistance, showed no cross-resistance to spinosad. There was no significant correlation between beetle weight and LC99.9. A discriminating concentration of 3% spinosad was set to separate resistant and susceptible individuals. Considering the levels of spinosad resistance that have been recorded in other insect pests, the sustained future usefulness of spinosad as a broiler house treatment will rely on effective integrated beetle management programs combined with carefully planned chemical use strategies.
Resumo:
Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is a common stored grain pest for which a wide range of suitable resources has been recorded. These beetles are facultatively fungivorous and their resource range may extend to fungi associated with non-grain resources (e.g. cotton seed) and other decaying plant matter. Little is known with respect to fungi in terms of resource location by these beetles in the field. We, therefore, conducted a series of experiments in laboratory arenas, glasshouse cages and the field to determine how beetles respond to grain resources in relation to cotton seed (together with its lint stubble and associated fungal flora). Results from the tests conducted in relatively small arenas and cages in the laboratory and glasshouse reveal that the responses of T. castaneum adults to food resources were twice as strong when walking as when flying (as measured by the proportion of the released beetles that were trapped). Also, a clear preference for linted cotton seeds was evident in walking T. castaneum, especially in small-scale arenas in the laboratory, where at least 60% of beetles released preferred linted cotton seeds over wheat and sorghum. Similarly, in cages (1 m3) they responded five times more strongly to linted cotton seed than to conventional grain resources. However, this pattern was not consistent with those obtained from field trapping over 20 m and the beetles did not show any particular preference to any of the resources tested above. Our results suggest a focus on walking beetles in trapping studies for population estimations and, for developing effective food-based trapping lures, the potential use of active volatiles from the fungi associated with linted cotton seed. © 2012 Elsevier Ltd.
Resumo:
The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2x) resistant strain. This gene was also found in the strongly resistant (431x) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12-206x resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431x) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes.
Resumo:
Spinosad, diatomaceous earth, and cyfluthrin were assessed on two broiler farms at Gleneagle and Gatton in southeastern Queensland, Australia in 2004-2005 and 2007-2009, respectively to determine their effectiveness in controlling lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Insecticide treatments were applied mostly to earth or 'hard' cement floors of broiler houses before the placement of new bedding. Efficacy of each agent was assessed by regular sampling of litter and counting of immature stages and adult beetles, and comparing insect counts in treatments to counts in untreated houses. Generally, the lowest numbers of lesser mealworm were recorded in the house with hard floors, these numbers equalling the most effective spinosad applications. The most effective treatment was a strategic application of spinosad under feed supply lines on a hard floor. In compacted earth floor houses, mean numbers of lesser mealworms for two under-feed-line spinosad treatments (i.e., 2-m-wide application at 0.18 g of active insecticide (g [AI]) in 100-ml water/m(2), and 1-m-wide application at 0.11 g ([AI] in 33-ml water/m(2)), and an entire floor spinosad treatment (0.07 g [AI] in 86-ml water/m2) were significantly lower (i.e., better control) than those numbers for cyfluthrin, and no treatment (controls). The 1-m-wide under-feed-line treatment was the most cost-effective dose, providing similar control to the other two most effective spinosad treatments, but using less than half the active component per broiler house. No efficacy was demonstrated when spinosad was applied to the surface of bedding in relatively large volumes of water. All applications of diatomaceous earth, applied with and without spinosad, and cyfluthrin at the label rate of 0.02 g (AI)/100-ml water/m(2) showed no effect, with insect counts not significantly different to untreated controls. Overall, the results of this field assessment indicate that cyfluthrin (the Australian industry standard) and diatomaceous earth were ineffective on these two farms and that spinosad can be a viable alternative for broiler house use.
Resumo:
BACKGROUND Our aim was to ascertain the potential of sulfuryl fluoride (SF) as an alternative fumigant to manage phosphine-resistant pests. We tested the susceptibility of all life stages of red flour beetle, Tribolium castaneum (Herbst), to SF and assessed the presence of cross-resistance to this fumigant in phosphine-resistant strains of this species. RESULTS Analysis of dose–response data indicated that the egg was the stage most tolerant to SF under a 48 h exposure period. At LC50, eggs were 29 times more tolerant than other immature stages and adults, and required a relatively high concentration of 48.2 mg L−1 for complete mortality. No significant differences in tolerance to SF were observed among the three larval instars, pupae and adults, and all of these stages were controlled at a low concentration of 1.32 mg L−1. Phosphine-resistant strains did not show cross-resistance to SF. CONCLUSION Our research concluded that the current maximum registered rate of SF, 1500 gh m−3, is adequate to control all the post-embryonic life stages of T. castaneum over a 48 h fumigation period, but it will fail to achieve complete mortality of eggs, indicating the risk of some survival of eggs under this short exposure period. As there is no cross-resistance to SF in phosphine-resistant insects, it will play a key role in managing phosphine resistance in stored-grain insect pests. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry
Resumo:
p.373-377
Resumo:
Tesis (Doctorado en Ciencias con Especialidad en Biotecnología) UANL
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work describes the first report about the occurrence of recombination nodules (RNs) in spread pachytene cells of two species of Coleoptera: Palembus dermestoides (Tenebrionidae) and Epicauta atomaria (Meloidae). The RNs were observed in preparations contrasted with phosphotungstic acid. Considering RN morphology and its occurrence in pachytene bivalents (one per autosome bivalent) these structures were interpreted to be late RNs. P. dermestoides and E. atolraria have 2n = 20 chromosomes including an Xyp sex determination system. In spite of most frequently subtelocentric morphology observed in the autosomes of both species, the occurrence of RNs is limited only to the synaptonemal complex (SC) structure of the long arms. These findings are in agreement with those obtained using light microscopy analysis in which only one chiasma or terminalization event is observed per autosomal bivalent in early or late metaphase I cells. The RNs have the same average width of the SC of each analyzed species, a circular shape, strong electron density, and are observed mainly between the lateral elements of the SC. The RNs of P. dermestoides and E. atomaria have approximately the same average size (width), 180 +/- 20 nm and 160 +/- 80 nm, respectively. The absence of RNs in the short arms and its occurrence in the long arms are discussed considering the short arm pericentromeric and pro-centric heterochromatin. Copyright (C) 2003 S. Karger AG, Basel
Resumo:
The mitotic and meiotic chromosomes of the beetles Epicauta atomaria (Meloidae) and Palembus dermestoides (Tenebrionidae) were analysed using standard staining, C-banding and silver impregnation techniques. We determine the diploid and haploid chromosome numbers, the sex determination system and describe the chromosomal morphology, the C-banding pattern and the chromosome(s) bearing NORs (nucleolar organizer regions). Both species shown 2n = 20 chromosomes, the chromosomal meioformula 9 + Xyp, and regular chromosome segregation during anaphases I and II. The chromosomes of E. atomaria are basically metacentric or submetacentric and P. dermestoides chromosomes are submetacentric or subtelocentric. In both beetles the constitutive heterochromatin is located in the pericentromeric region in all autosomes and in the Xp chromosome; additional C-bands were observed in telomeric region of the short arm in some autosomes in P. dermestoides. The yp chromosome did not show typical C-bands in these species. As for the synaptonemal complex, the nucleolar material is associated to the 7th bivalent in E. atomaria and 3rd and 7th bivalents in P. dermestoides. Strong silver impregnated material was observed in association with Xyp in light and electron microscopy preparations in these species and this material was interpreted to be related to nucleolar material.
Resumo:
Searching for a new alternative to A. diaperinus control, it was evaluated the action of Spinosad in two concentrations (250ppm, 400ppm) and two doses (0.05 L/m 2 and 0.1 L/m 2), applied in poultry broiler facilities naturally infested by this coleoptera. Assessments of the infestation were held in weekly intervals, during 49 days after treatment, using traps. The percentage of effectiveness were calculated from the results of the number of adults and/or larval stages in control and treated groups. Spinosad at the concentration of 250ppm, applied at a dose of 0.1L/m2, can be considered ineffective against these beetles, however the application of 400ppm at a dose of 0.1L/m2 showed high efficacy and short residual period. The dose of 0.1L/m 22 of Spinosad at the concentration of 400ppm demonstrated, between treatments, better effectiveness against coleopters, reaching efficacy of 100% against larvae of A. diaperinus, observed after the seventh day post-treatment.
Resumo:
Cypermethrin dust was evaluated as a tool for the integrated management of lesser mealwonns (also called the darkling beetle), Alphitobius diaperinus (Panzer). This experiment examined the efficacy of the cypermethrin against adult and late instar lesser mealwonns under laboratory conditions. Two bioassay methods were evaluated, using either a petri plate or a covered plastic container simulating poultry house conditions. In the simulated conditions, two different samples were used and cypermethrin was either dusted onto the surface of the container or was directly dusted onto the bottom. The LC50 for adults was 636.6 ppm, however, 929.7 ppm of cypermethrin dust was needed to achieve a 50% mortality rate in late instar larvae 24 h after the administration of the insecticide. A similar trend was observed in the simulated poultry houses when the adult mortality was > 90% while effectiveness in late in. star larvae was decreased, i.e., between 50 and 85%. Significant differences in the toxicity profiles were observed in larvae mortality when cypermethrin it was dusted directly onto the litter surface, compared to the bottom of the container. We have verified that cypermethrin dust is available for use in poultry houses however, toxicity profiles of lesser mealworm may depend on the beetle's stage of development and method of application
Resumo:
Title of original article: On the revision of the tenebrionidae of America, north of Mexico.