65 resultados para Tenascin
Cox-2, tenascin, CRP, and ingraft chimerism in a model of post-transplant obliterative bronchiolitis
Resumo:
Chronic rejection in the form of obliterative bronchiolitis (OB) is the major cause of death 5 years after lung transplantation. The exact mechanism of OB remains unclear. This study focused on the role of cyclo-oxygenase (COX) -2, tenascin, and C-reactive protein (CRP) expression, and the occurrence of ingraft chimerism (= cells from two genetically distinct individuals in a same individual) in post-transplant OB development. In our porcine model, OB developed invariably in allografts, while autografts stayed patent. The histological changes were similar to those seen in human OB. In order to delay or prevent obliteration, animals were medicated according to certain protocol. In the beginning of the bronchial allograft reaction, COX-2 induction occurred in airway epithelial cells prior to luminal obliteration. COX-2 expression in macrophages and fibroblasts paralleled the onset of inflammation and fibroblast proliferation. This study demonstrated for the first time, that COX-2 expression is associated with the early stage of post- transplant obliterative airway disease. Tenascin expression in the respiratory epithelium appeared to be predictive of histologic features observed in human OB, and influx of immune cells. Expression in the bronchial wall and in the early obliterative lesions coincided with the onset of onset of fibroblast and inflammatory cell proliferation in the early stage of OB and was predictive of further influx of inflammatory and immune cells. CRP expression in the bronchial wall coincided with the remodelling process. High grade of bronchial wall CRP staining intensity predicted inflammation, accelerated fibroproliferation, and luminal obliteration, which are all features of OB. In the early obliterative plaque, majority of cells expressed CRP, but in mature, collagen-rich plaque, expression declined. Local CRP expression might be a response to inflammation and it might promote the development of OB. Early appearance of chimeric (= recipient-derived) cells in the graft airway epithelium predicted epithelial cell injury and obliteration of the bronchial lumen, which both are features of OB. Chimeric cells appeared in the airway epithelium after repair following transplantation-induced ischemic injury. Ingraft chimerism might be a mechanism to repair alloimmune-mediated tissue injury and to protect allografts from rejection after transplantation. The results of this study indicate, that COX-2, tenascin, CRP, and ingraft chimerism have a role in OB development. These findings increase the understanding of the mechanisms of OB, which may be beneficial in further development of diagnostic options.
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprinbeta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprinbeta. In chicken tenascin-C, meprinbeta processed all three major splicing variants by removal of 10kDa N-terminal and 38kDa C-terminal peptides, leaving a large central part of subunits intact. A similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15kDa) and two C-terminal fragments (40 and 55kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprinbeta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprinbeta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprinbeta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprinbeta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprinbeta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity.
Resumo:
The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.
Resumo:
Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.
Resumo:
The role of and interaction between bacterial infection and biomechanical impact in the development of peri-implant inflammatory processes is not clear.
Resumo:
Large oligomeric proteins often contain several binding sites for different molecules and can therefore induce formation of larger protein complexes. Collagen XII, a multidomain protein with a small collagenous region, interacts with fibrillar collagens through its C-terminal region. However, no interactions to other extracellular proteins have been identified involving the non-collagenous N-terminal NC3 domain. To further elucidate the components of protein complexes present close to collagen fibrils, different extracellular matrix proteins were tested for interaction in a solid phase assay. Binding to the NC3 domain of collagen XII was found for the avian homologue of tenascin-X that in humans is linked to Ehlers-Danlos disease. The binding was further characterized by surface plasmon resonance spectroscopy and supported by immunohistochemical co-localization in chick and mouse tissue. On the ultrastructural level, detection of collagen XII and tenascin-X by immunogold labeling confirmed this finding.
Resumo:
In chick embryo fibroblasts, the mRNA for extracellular matrix protein tenascin-C is induced 2-fold by cyclic strain (10%, 0.3 Hz, 6 h). This response is attenuated by inhibiting Rho-dependent kinase (ROCK). The RhoA/ROCK signaling pathway is primarily involved in actin dynamics. Here, we demonstrate its crucial importance in regulating tenascin-C expression. Cyclic strain stimulated RhoA activation and induced fibroblast contraction. Chemical activators of RhoA synergistically enhanced the effects of cyclic strain on cell contractility. Interestingly, tenascin-C mRNA levels perfectly matched the extent of RhoA/ROCK-mediated actin contraction. First, RhoA activation by thrombin, lysophosphatidic acid, or colchicine induced tenascin-C mRNA to a similar extent as strain. Second, RhoA activating drugs in combination with cyclic strain caused a super-induction (4- to 5-fold) of tenascin-C mRNA, which was again suppressed by ROCK inhibition. Third, disruption of the actin cytoskeleton with latrunculin A abolished induction of tenascin-C mRNA by chemical RhoA activators in combination with cyclic strain. Lastly, we found that myosin II activity is required for tenascin-C induction by cyclic strain. We conclude that RhoA/ROCK-controlled actin contractility has a mechanosensory function in fibroblasts that correlates directly with tenascin-C gene expression. Previous RhoA/ROCK activation, either by chemical or mechanical signals, might render fibroblasts more sensitive to external tensile stress, e.g., during wound healing.
Resumo:
Tenascin-C (TNC) is a mechano-regulated, morphogenic, extracellular matrix protein that is associated with tissue remodeling. The physiological role of TNC remains unclear because transgenic mice engineered for a TNC deficiency, via a defect in TNC secretion, show no major pathologies. We hypothesized that TNC-deficient mice would demonstrate defects in the repair of damaged leg muscles, which would be of functional significance because this tissue is subjected to frequent cycles of mechanical damage and regeneration. TNC-deficient mice demonstrated a blunted expression of the large TNC isoform and a selective atrophy of fast-muscle fibers associated with a defective, fast myogenic expression response to a damaging mechanical challenge. Transcript profiling mapped a set of de-adhesion, angiogenesis, and wound healing regulators as TNC expression targets in striated muscle. Expression of these regulators correlated with the residual expression of a damage-related 200-kDa protein, which resembled the small TNC isoform. Somatic knockin of TNC in fast-muscle fibers confirmed the activation of a complex expression program of interstitial and slow myofiber repair by myofiber-derived TNC. The results presented here show that a TNC-orchestrated molecular pathway integrates muscle repair into the load-dependent control of the striated muscle phenotype.
Resumo:
Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.
Resumo:
Tenascins represent a family of extracellular matrix glycoproteins with distinctive expression patterns. Here we have analyzed the most recently described member, tenascin-W, in breast cancer. Mammary tumors isolated from transgenic mice expressing hormone-induced oncogenes reveal tenascin-W in the stroma around lesions with a high likelihood of metastasis. The presence of tenascin-W was correlated with the expression of its putative receptor, alpha8 integrin. HC11 cells derived from normal mammary epithelium do not express alpha8 integrin and fail to cross tenascin-W-coated filters. However, 4T1 mammary carcinoma cells do express alpha8 integrin and their migration is stimulated by tenascin-W. The expression of tenascin-W is induced by BMP-2 but not by TGF-beta1, though the latter is a potent inducer of tenascin-C. The expression of tenascin-W is dependent on p38MAPK and JNK signaling pathways. Since preinflammatory cytokines also act through p38MAPK and JNK signaling pathways, the possible role of TNF-alpha in tenascin-W expression was also examined. TNF-alpha induced the expression of both tenascin-W and tenascin-C, and this induction was p38MAPK- and cyclooxygenase-dependent. Our results show that tenascin-W may be a useful diagnostic marker for breast malignancies, and that the induction of tenascin-W in the tumor stroma may contribute to the invasive behavior of tumor cells.
Resumo:
The whisker follicle has CD34-positive stem cells that migrate from their niche near the bulge along the glassy membrane to the whisker bulb, where they participate in the formation of the whisker shaft. Using immunohistochemistry we found the glycoprotein tenascin-C in the fibrous capsule of mouse whisker follicles, along the glassy membrane and in the trabecular region surrounding keratin-15-negative, CD34-positive stem cells. The related glycoprotein tenascin-W is found in the CD34-positive stem cell niche, in nearby trabeculae, and along the glassy membrane. Tenascin-W is also found in the neural stem cell niche of nearby hair follicles. The formation of stress fibers and focal adhesion complexes in CD34-positive whisker-derived stem cells cultured on fibronectin was inhibited by both tenascin-C and tenascin-W, which is consistent with a role for these glycoproteins in promoting the migration of these cells from the niche to the whisker bulb. Tenascin-C, but not tenascin-W, increased the proliferation of whisker follicle stem cells in vitro. Thus, the CD34-positive whisker follicle stem cell niche contains both tenascin-C and tenascin-W, and these glycoproteins may play a role in directing the migration and proliferation of these stem cells.
Resumo:
Pre- and postnatal corticosteroids are often used in perinatal medicine to improve pulmonary function in preterm infants. To mimic this clinical situation, newborn rats were treated systemically with dexamethasone (Dex), 0.1-0.01 mg/kg/day on days P1-P4. We hypothesized that postnatal Dex may have an impact on alveolarization by interfering with extracellular matrix proteins and cellular differentiation. Morphological alterations were observed on 3D images obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. Alveolarization was quantified stereologically by estimating the formation of new septa between days P4 and P60. The parenchymal expression of tenascin-C (TNC), smooth muscle actin (SMA), and elastin was measured by immunofluorescence and gene expression for TNC by qRT-PCR. After Dex treatment, the first phase of alveolarization was significantly delayed between days P6 and P10, whereas the second phase was accelerated. Elastin and SMA expressions were delayed by Dex treatment, whereas TNC expression was delayed and prolonged. A short course of neonatal steroids impairs the first phase of alveolarization, most likely by altering the TNC and elastin expression. Due to an overshooting catch-up during the second phase of alveolarization, the differences disappear when the animals reach adulthood.
Resumo:
The extracellular matrix molecule tenascin-C (TNC) is a major component of the cancer-specific matrix, and high TNC expression is linked to poor prognosis in several cancers. To provide a comprehensive understanding of TNC's functions in cancer, we established an immune-competent transgenic mouse model of pancreatic β-cell carcinogenesis with varying levels of TNC expression and compared stochastic neuroendocrine tumor formation in abundance or absence of TNC. We show that TNC promotes tumor cell survival, the angiogenic switch, more and leaky vessels, carcinoma progression, and lung micrometastasis. TNC downregulates Dickkopf-1 (DKK1) promoter activity through the blocking of actin stress fiber formation, activates Wnt signaling, and induces Wnt target genes in tumor and endothelial cells. Our results implicate DKK1 downregulation as an important mechanism underlying TNC-enhanced tumor progression through the provision of a proangiogenic tumor microenvironment.