413 resultados para Tempered MCMC
Resumo:
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.
Resumo:
An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.
Resumo:
The use of graphical processing unit (GPU) parallel processing is becoming a part of mainstream statistical practice. The reliance of Bayesian statistics on Markov Chain Monte Carlo (MCMC) methods makes the applicability of parallel processing not immediately obvious. It is illustrated that there are substantial gains in improved computational time for MCMC and other methods of evaluation by computing the likelihood using GPU parallel processing. Examples use data from the Global Terrorism Database to model terrorist activity in Colombia from 2000 through 2010 and a likelihood based on the explicit convolution of two negative-binomial processes. Results show decreases in computational time by a factor of over 200. Factors influencing these improvements and guidelines for programming parallel implementations of the likelihood are discussed.
Resumo:
Standard Monte Carlo (sMC) simulation models have been widely used in AEC industry research to address system uncertainties. Although the benefits of probabilistic simulation analyses over deterministic methods are well documented, the sMC simulation technique is quite sensitive to the probability distributions of the input variables. This phenomenon becomes highly pronounced when the region of interest within the joint probability distribution (a function of the input variables) is small. In such cases, the standard Monte Carlo approach is often impractical from a computational standpoint. In this paper, a comparative analysis of standard Monte Carlo simulation to Markov Chain Monte Carlo with subset simulation (MCMC/ss) is presented. The MCMC/ss technique constitutes a more complex simulation method (relative to sMC), wherein a structured sampling algorithm is employed in place of completely randomized sampling. Consequently, gains in computational efficiency can be made. The two simulation methods are compared via theoretical case studies.
Computation of ECG signal features using MCMC modelling in software and FPGA reconfigurable hardware
Resumo:
Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.
Resumo:
Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.
Resumo:
Pseudo-marginal methods such as the grouped independence Metropolis-Hastings (GIMH) and Markov chain within Metropolis (MCWM) algorithms have been introduced in the literature as an approach to perform Bayesian inference in latent variable models. These methods replace intractable likelihood calculations with unbiased estimates within Markov chain Monte Carlo algorithms. The GIMH method has the posterior of interest as its limiting distribution, but suffers from poor mixing if it is too computationally intensive to obtain high-precision likelihood estimates. The MCWM algorithm has better mixing properties, but less theoretical support. In this paper we propose to use Gaussian processes (GP) to accelerate the GIMH method, whilst using a short pilot run of MCWM to train the GP. Our new method, GP-GIMH, is illustrated on simulated data from a stochastic volatility and a gene network model.
Resumo:
This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.
Resumo:
Low-complexity near-optimal detection of signals in MIMO systems with large number (tens) of antennas is getting increased attention. In this paper, first, we propose a variant of Markov chain Monte Carlo (MCMC) algorithm which i) alleviates the stalling problem encountered in conventional MCMC algorithm at high SNRs, and ii) achieves near-optimal performance for large number of antennas (e.g., 16×16, 32×32, 64×64 MIMO) with 4-QAM. We call this proposed algorithm as randomized MCMC (R-MCMC) algorithm. Second, we propose an other algorithm based on a random selection approach to choose candidate vectors to be tested in a local neighborhood search. This algorithm, which we call as randomized search (RS) algorithm, also achieves near-optimal performance for large number of antennas with 4-QAM. The complexities of the proposed R-MCMC and RS algorithms are quadratic/sub-quadratic in number of transmit antennas, which are attractive for detection in large-MIMO systems. We also propose message passing aided R-MCMC and RS algorithms, which are shown to perform well for higher-order QAM.
Resumo:
In this paper, we propose a low-complexity algorithm based on Markov chain Monte Carlo (MCMC) technique for signal detection on the uplink in large scale multiuser multiple input multiple output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and similar number of uplink users. The algorithm employs a randomized sampling method (which makes a probabilistic choice between Gibbs sampling and random sampling in each iteration) for detection. The proposed algorithm alleviates the stalling problem encountered at high SNRs in conventional MCMC algorithm and achieves near-optimal performance in large systems with M-QAM. A novel ingredient in the algorithm that is responsible for achieving near-optimal performance at low complexities is the joint use of a randomized MCMC (R-MCMC) strategy coupled with a multiple restart strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for large number of BS antennas and users (e.g., 64, 128, 256 BS antennas/users).