894 resultados para Temperatura de Calcinação


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The state of Rio Grande do Norte presents a great potentiality for the production of ceramic tiles because of having natural raw material in quantity and quality making its economical exploration possible, beyond the great energetic differential of the state, the natural gás. This works aims to study the influence of the dolomite and granulometry concentration and calcinations temperature in the obtaining of formulations for porous coverings which have to be coherent to the project,s specifications. The experiments have involved the physical-chemical and mineralogical characterizations of raw materials and mechanical tests in the dry and burnt proof bodies preceding a mixture experiment planning with the use of the response surface methodology, in order to get the best raw materials combinations to produce a ceramic mass with specific properties. The twelve ceramic masses studied in this work were prepared by the via dry process, characterized, shaped by uniaxial pressing and sinterized in the temperatures of 940ºC, 1000ºC, 1060ºC, 1120ºC and 1180ºC, using a fast burning cycle. The crystalline phases formed during the sintering in the temperatures in study have revealed the presence of anorthite and diopside beyond quartz with a remaining phase. These phases were the main responsible ones by the physical- mechanical properties of the sinterized proof bodies. The proof bodies after the sintering stage have presented water absorption higher than 10% and a good dimensional stability in all studied temperatures. However, the flexural breaking strength results in the temperatures of 940ºC, 1000ºC and 1060ºC, under the temperature zone of the vitrification of ceramic whiteware do not reach the flexural breaking strength specific for the porous wall tile (15 MPa), but in the temperature of 1120ºC next to the vitrification temperature zone, some whiteware ceramic (formulations) has reached the specified value for the porous wall tile. The results of this work have showed that the studied raw materials have great importance for used in the production of porous wall tiles (BIII)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supersulfated cement (CSS) basically consist of up to 90% blast furnace slag, 10-20% of a source of calcium sulfate and a small amount of alkali activator, covered by European standard EN 15743/2010. Because of this SSC are considered "green cement" low environmental impact. The source of calcium sulfate used in the preparation of CSS can be obtained from natural sources, such as gypsum or from alternative sources (industrial products), such as phosphogypsum. The phosphogypsum is a by-product of the fertilizer industry, used in the production of phosphoric acid. In this process the phosphate rock is treated with sulfuric acid to give as the major product phosphoric acid (H3PO4), gypsum and a small amount of hydrofluoric acid. The chemical composition of gypsum is basically calcium sulfate dihydrate (CaSO4.2H2O), similar to gypsum, because it can be used in this type of cement. To become anhydrous, the calcination of gypsum is necessary. The availability of the source of calcium sulfate to react with the slag is dependent on its solubility that is directly related to its calcination temperature. The solubility of the anhydrous gypsum decreases with increasing calcination temperature. This study investigated the influence of temperature of calcination of phosphogypsum on the performance of CSS. Samples were prepared with 10 and 20% of phosphogypsum calcinated at 350 to 650 ° C using KOH as an alkaline activator at three different concentrations (0.2, 0.5 and 0.8%). The results showed that all mortars presented the minimum values required by EN 15743/2010 for 7 and 28 days of hydration. In general CSS containing 10% phosphogypsum showed slightly better compressive strength results using a lower calcination temperature (350 °C) and curing all ages. The CSS containing 20% of calcined gypsum at 650 °C exhibit satisfactory compressive strenght at 28 days of hydration, but at later ages (56 to 90 days) it strongly reduced. This indicates that the calcination temperature of phosphogypsum has a strong influence on the performance of the CSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The state of Rio Grande do Norte presents a great potentiality for the production of ceramic tiles because of having natural raw material in quantity and quality making its economical exploration possible, beyond the great energetic differential of the state, the natural gás. This works aims to study the influence of the dolomite and granulometry concentration and calcinations temperature in the obtaining of formulations for porous coverings which have to be coherent to the project,s specifications. The experiments have involved the physical-chemical and mineralogical characterizations of raw materials and mechanical tests in the dry and burnt proof bodies preceding a mixture experiment planning with the use of the response surface methodology, in order to get the best raw materials combinations to produce a ceramic mass with specific properties. The twelve ceramic masses studied in this work were prepared by the via dry process, characterized, shaped by uniaxial pressing and sinterized in the temperatures of 940ºC, 1000ºC, 1060ºC, 1120ºC and 1180ºC, using a fast burning cycle. The crystalline phases formed during the sintering in the temperatures in study have revealed the presence of anorthite and diopside beyond quartz with a remaining phase. These phases were the main responsible ones by the physical- mechanical properties of the sinterized proof bodies. The proof bodies after the sintering stage have presented water absorption higher than 10% and a good dimensional stability in all studied temperatures. However, the flexural breaking strength results in the temperatures of 940ºC, 1000ºC and 1060ºC, under the temperature zone of the vitrification of ceramic whiteware do not reach the flexural breaking strength specific for the porous wall tile (15 MPa), but in the temperature of 1120ºC next to the vitrification temperature zone, some whiteware ceramic (formulations) has reached the specified value for the porous wall tile. The results of this work have showed that the studied raw materials have great importance for used in the production of porous wall tiles (BIII)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atualmente, existe um crescente interesse por fontes de energia renováveis e o desenvolvimento de novas tecnologias para a produção de biocombustíveis. O biodiesel é uma fonte alternativa de combustível bastante atrativa em relação ao diesel em decorrência de seus benefícios ambientais. A obtenção de biodiesel é geralmente realizada através de reações de transesterificação de óleos vegetais com álcool de cadeia curta. Entretanto, também se pode produzi-lo através da esterificação de ácidos graxos livres utilizando-se matérias-primas de baixa qualidade como rejeitos industriais, domésticos ou gorduras animais. O estudo de catalisadores que melhorem os resultados destas reações tem importante papel no desenvolvimento da produção de biodiesel. Normalmente, utilizam-se catalisadores básicos como o NaOH, nas reações de transesterificação. No entanto, o uso destes catalisadores causa impactos ambientais, além de promover a reação de saponificação quando a matéria-prima apresenta teores significativos de acidez, reduzindo o rendimento e dificultando a separação de fases. Este trabalho apresenta o estudo de catalisadores ácidos, à base de estanho, com ênfase especial no sulfato de estanho II, voltados para utilização na reação de esterificação de cargas contendo elevados teores em ácidos graxos. Avaliou-se a influência das variáveis: temperatura, concentração do catalisador, tipo de sistema reacional, quantidade de etanol, tipo de álcool, acidez, natureza dos ácidos graxos e temperatura de calcinação. Uma comparação entre os catalisadores, a questão da reutilização do catalisador e das mudanças proporcionadas pelo tratamento térmico ao qual foram submetidos também foram analisadas. Dentre os catalisadores estudados, os de sulfato de estanho mostraram maior atividade catalítica frente à reação estudada, os mais promissores sendo os calcinados até a temperatura de 500C. O principal motivo para os altos rendimentos encontrados foi associado ao comportamento pseudo-homogêneo do SnSO4, que se solubiliza, acidificando o meio reacional durante as reações de esterificação

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os materiais ferroelétricos têm sido utilizados em muitas áreas da tecnologia e da ciência, pois possuem um grande número de aplicações, como: sensores; transdutores; capacitores; dispositivos ópticos; dentre outras. A busca por novos materiais cerâmicos ferroelétricos tem sido grande. Um dos materiais cerâmicos ferroelétricos mais estudados é o titanato de bário (BT). São vários os métodos de produção e caracterização do titanato de bário. Neste trabalho, pós cerâmicos de titanato de bário foram obtidos por reação do estado sólido a partir de misturas reacionais calcinadas em diferentes temperaturas entre 400C e 900C. Foram três as misturas reacionais: não dopadas; dopadas com 1%; e dopadas com 5% de dióxido de cério (CeO2). A identificação da formação do BT, nos pós cerâmicos produzidos, foi feita a partir de três técnicas de caracterização: difração de raios X (DRX); espectroscopia fotoacústica (PAS); e técnicas de análise térmica. Com a técnica DRX, difratogramas mostraram que a plena formação do titanato de bário ocorreu a partir da temperatura de calcinação de 700C. Para a amostra não dopada com cério e calcinada a 800C, houve deslocamento de todos os picos de difração. Nas amostras dopadas com dióxido de cério houve deslocamento de todos os picos de difração, em relação as amostras não dopadas. Observou-se também que nas amostras dopadas com 5% de CeO2, e calcinadas a 700C e 800C, resíduos de dióxido de cério foram observados nos difratogramas. Com a técnica PAS, espectros de absorção foram obtidos. Foi possível observar uma grande diferença de absorção da amostra calcinada a 600 e 630C, indicando a formação do titanato de bário a partir da temperatura de 630C, nas amostras sem a dopagem dióxido de cério. Houve um alargamento nas bandas de absorção a partir da temperatura de 600C, quando o dióxido de cério entrou na matriz. Foi também possível determinar as energias de band-gap das amostras utilizando o método de Tauc. Com as técnicas de análise térmica, em especial através da técnica termogravimétrica (TG/DTG), foi comprovado que até 400C não havia formação de titanato de bário. Visto que nesta temperatura de calcinação houve a maior perda de massa durante a rampa de aquecimento. O início da formação do titanato de bário foi observado a partir da temperatura de calcinação de 500C, assim como nas técnicas DRX e PAS. Portanto, com os resultados apresentados, foi demonstrada a identificação da formação do titanato de bário nas misturas reacionais calcinadas, com auxílio das potencialidades das três técnicas utilizadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A crescente preocupação com a preservação do meio ambiente aliada às perspectivas de esgotamento das fontes de energia obtidas dos combustíveis fósseis tem impulsionado a indústria a desenvolver combustíveis alternativos a partir de recursos renováveis e processos ambientalmente não agressivos. O biodiesel, uma mistura de ésteres de ácidos graxos obtida pela transesterificação catalítica de óleos vegetais com álcoois de cadeia curta (metanol ou etanol) é um combustível alternativo importante, pelo fato das suas propriedades (índice de cetano, conteúdo energético e viscosidade) serem similares às do diesel obtido a partir do petróleo. No presente trabalho, a transesterificação do óleo de soja com metanol para a produção de biodiesel foi estudada em presença de catalisadores sólidos à base de Mg/La e Al/La com propriedades ácido-básicas. Catalisadores de Mg/La com uma relação molar Mg/La igual a 9:1 foram preparados por coprecipitação utilizando três métodos que se diferenciavam quanto ao tipo de agente precipitante e a temperatura de calcinação. O catalisador preparado com (NH4)2CO3/NH4OH como agente precipitante e calcinado a 450 C apresentou as melhores características físico-químicas e catalíticas. Catalisadores à base de Mg/La e Al/La com diferentes composições químicas foram sintetizados nas condições de preparo selecionadas. O comportamento catalítico destes materiais foi investigado frente à reação de transesterificação do óleo de soja com metanol. O catalisador de Al/La com uma relação molar Al/La igual a 9:1 mostrou o melhor desempenho catalítico (rendimento em ésteres metílicos igual a 84 % a 180 C) e pode ser reutilizado por pelo menos três ciclos de reação. Também foram realizados testes catalíticos na presença do óleo de soja com 10 % de ácido oleico verificando-se que os catalisadores utilizados possuem sítios capazes de catalisar as reações de transesterificação e esterificação

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MELO, D. M. A. et al. Synthesis and charactezarion of lanthanum and yttrium doped Fe2O3 pigments. Cerâmica, São Paulo, v. 53, p. 79-82, 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work have been studied the preparation, characterization and kinetic study of decomposition of the polymerizing agent used in the synthesis under non-isothermal condition ceramics PrMO3 of general formula (M = Co and Ni). These materials were obtained starting from the respective metal nitrates, as a cations source, and making use of gelatin as polymerizing agent. The powders were calcined at temperatures of 500°C, 700°C and 900°C and characterized by X-ray Diffraction (XRD), Thermogravimetric Analysis (TG / DTG/ DTA), Infrared Spectroscopy (FTIR), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was detected in all the X-rays patterns. In the infrared spectroscopy observed the oxide formation as the calcination temperature increases with the appearance of the band metal - oxygen. The images of SEM revealed uniform distribution for the PrCoO3 and particles agglomerated as consequence of particle size for PrNiO3. From the data of thermal analysis, the kinetics of decomposition of organic matter was employed using the kinetics methods called Model Free Kinetics and Flynn and Wall, in the heating ratios 10, 20 and 30° C.min-1 between room temperature and 700°C. Finally, been obtained the values of activation energy for the region of greatest decomposition of organic matter in samples that were determined by the degree of conversion (α)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inorganic pigment comprises a host lattice, which is part of the chromophore component (usually a transition metal cation) and possible components modifiers, which stabilize, add or restate the properties pigments. Among the materials with spinel, ferrites, and the chromite stand out, because they have broad technological importance in the area of materials, applicability, pigments, catalytic hydrogenation, thin film, ceramic tiles, among others. The present work, pigments containing CuFe2O4, CuCr2O4,e CuFeCrO4, were synthesized by a method that makes use of gelatin as organic precursor using their application to ceramic pigments. The pigments were characterized by X-ray diffraction (XRD), Infrared spectroscopy, scanning electron microscopy (SEM) spectroscopy in the UV-visible and Colorimetry. The results confirmed the feasibility of the synthetic route used, with respect to powders synthesized, there is the formation of spinel phase from 500°C, with an increase in crystallinity and the formation of other phases. The pigments were shown to be crystalline and the desired phases were obtained. The copper chromite have hues ranging from green to black according to the calcination temperature, while the copper chromite doped with iron had brownish. The ferrites showed copper color and darker brown to black, which may indicate an interesting factor because of the importance of black pigment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the ceramics industry are becoming more predominantly inorganic nature pigments. Studies in this area allow you to develop pigments with more advanced properties and qualities to be used in the industrial context. Studies on synthesis and characterization of cobalt aluminate has been widely researched, cobalt aluminate behavior at different temperatures of calcinations, highlighting especially the temperatures of 700, 800 and 900° C that served as a basis in the development of this study, using the method of polymerization of complex (CPM), economic, and this method applied in ceramic pigment synthesis. The procedure was developed from a fractional factorial design 2 (5-2) in order to optimize the process of realization of the cobalt aluminate (CoAl2O4), having as response surfaces the batch analysis data of Uv-vis spectroscopy conducted from the statistic software 7.0, for this were chosen five factors as input variables: citric acid (stoichiometric manner), puff or pyrolysis time (h), temperature (° C), and calcinations (° C/min), at levels determined for this study. By applying statistics in the process of obtaining the CoAl2O4 is possible the study of these factors and which may have greater influence in getting the synthesis. The pigments characterized TG/DSC analyses, and x-ray diffraction (XRD) and scanning electron microscope (SEM/EDS) in order to establish the structural and morphological aspects of pigment CoAl2O4, among the factors studied it were found to statically with increasing calcinations temperature 700°< 800 <900 °C, the bands of Uv-vis decrease with increasing intensity of absorbance and that with increasing time of puff or pyrolysis (h) there is an increase in bands of Uv-vis proportionally, the generated model set for the conditions proposed in this study because the coefficient of determination can explain about 99.9% of the variance (R²), response surfaces generated were satisfactory, so it s possible applicability in the ceramics industry of pigments

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main goal of this work was to produce nanosized ceramic materials of the family of the tungstates (tungstates of cerium and strontium), and test them for their catalytic activity in processes involving the transformation of methane (CH4). The methodology used for the synthesis of the ceramic powders involved the complexation combining EDTA-citrate. The materials characterization was performed using simple and differential thermogravimetry, x-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy (EDS). The microstructure analysis was performed using the refinement by the Rietveld method, and the crystallite size and distribution of the materials was elucidate by the Scherrer and Williamson-Hall methods. The conditions of the synthesis process for the three envisaged materials (SrWO4, SrWO4 using tungsten oxide concentrate as raw material, and Ce2(WO4)3) were adjusted to obtain a single phase crystalline material. The catalytic tests were carried out in the presence of methane and synthetic air, which is composed of 21% O2 and 79% N2. The analysis of the conversion of the reaction was done with the aid of an fourier transform infrared device (FTIR). The analysis showed that, structurally, the SrWO4 produced using raw materials of high and poor purity (99% and 92%, respectively) are similar. The ideal parameters of calcination, in the tested range, are temperature of 1000 °C and time of calcination 5 hours. For the Ce2(WO4)3, the ideal calcination time and are temperature 15 hours and 1000°C, respectively. The Williamson-Hall method provided two different distributions for the crystallite size of each material, whose values ranged between the nanometer and micrometer scales. According to method of Scherrer, all materials produced were composed of nanometric crystallites. The analyses of transmission electron microscopy confirmed the results obtained from the Williamson- Hall method for the crystallite size. The EDS showed an atomic composition for the metals in the SrWO4 that was different of the theoretical composition. With respect to the catalytic tests, all materials were found to be catalytically active, but the reaction process should be further studied and optimized.