8 resultados para Tekscan


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pressure injuries are a serious risk for patients admitted to hospital and are thought to result from a number of forces operating on skin tissue (pressure, shear and friction). Most research on interface pressure (IP) has taken place using healthy volunteers or mannequins. Little is currently known about the relationship between pressure injury risk and IP for hospital patients. This relationship was investigated with a sample of 121 adult hospital patients. Pressure injury risk was evaluated using the Waterlow Risk Assessment Tool (WRAT) and IP was measured at the sacrum using a Tekscan ClinSeatTM IP sensor mat. Other factors considered were body mass index (BMI), blood pressure, reason for hospital admission, comorbidities and admission route to hospital. Patients were classified according to WRAT categories (‘low risk’, ‘at risk’, ‘high risk’, ‘very high risk’) and then remained still on a standard hospital mattress for 10 minutes while IP was measured. Participants in the ‘low risk’ group were significantly younger than all other groups (p<0.001) and there were some group differences in BMI. IP readings were compared between the ‘low risk’ group and all of the participants at greater risk. The ‘low risk’ group had significantly lower IP at the sacrum on a standard hospital mattress than those at greater risk (p=0.002). Those at greater risk tended to have IP readings at the low end of the compromised IP range. This study is significant because it describes a new, clinically relevant methodology and presents findings that challenge clinician assumptions about the relationships between pressure injury risk assessment and IP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Educação - FFC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate different handles used in axillary crutches with a Pressure Mapping System. The Grip Versatek system from Tekscan Inc. was used to measure the levels and the distribution of contact pressure in the hands during a simulated activity of ambulation with crutches. The sample included ten able-bodied subjects: five men and five women. The results show that the different models of handles appear to have influenced the pressure levels measured during the activity. Therefore, the measurement equipment provides parameters that allow the comparison among different designs and assess their contribution to the comprehension of the demands of ergonomic handles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the interaction of sea ice with offshore structures is of primary importance for the development of technology in cold climate regions. The rheological properties of sea ice (strength, creep, viscosity) as well as the roughness of the contact surface are the main factors influencing the type of interaction with a structure. A device was developed and designed and small scale laboratory experiments were carried out to study sea ice frictional interaction with steel material by means of a uniaxial compression rig. Sea-ice was artificially grown between a stainless steel piston (of circular cross section) and a hollow cylinder of the same material, coaxial to the former and of the same surface roughness. Three different values for the roughness were tested: 1.2, 10 and 30 μm Ry (maximum asperities height), chosen as representative values for typical surface conditions, from smooth to normally corroded steel. Creep tests (0.2, 0.3, 0.4 and 0.6 kN) were conducted at T = -10 ºC. By pushing the piston head towards the cylinder base, three different types of relative movement were observed: 1) the piston slid through the ice, 2) the piston slid through the ice and the ice slid on the surface of the outer cylinder, 3) the ice slid only on the cylinder surface. A cyclic stick-slip motion of the piston was detected with a representative frequency of 0.1 Hz. The ratio of the mean rate of axial displacement to the frequency of the stick-slip oscillations was found to be comparable to the roughness length (Sm). The roughness is the most influential parameter affecting the amplitude of the oscillations, while the load has a relevant influence on the their frequency. Guidelines for further investigations were recommended. Marco Nanetti - seloselo@virgilio.it

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: A fixed cavovarus foot deformity can be associated with anteromedial ankle arthrosis due to elevated medial joint contact stresses. Supramalleolar valgus osteotomies (SMOT) and lateralizing calcaneal osteotomies (LCOT) are commonly used to treat symptoms by redistributing joint contact forces. In a cavovarus model, the effects of SMOT and LCOT on the lateralization of the center of force (COF) and reduction of the peak pressure in the ankle joint were compared. METHODS: A previously published cavovarus model with fixed hindfoot varus was simulated in 10 cadaver specimens. Closing wedge supramalleolar valgus osteotomies 3 cm above the ankle joint level (6 and 11 degrees) and lateral sliding calcaneal osteotomies (5 and 10 mm displacement) were analyzed at 300 N axial static load (half body weight). The COF migration and peak pressure decrease in the ankle were recorded using high-resolution TekScan pressure sensors. RESULTS: A significant lateral COF shift was observed for each osteotomy: 2.1 mm for the 6 degrees (P = .014) and 2.3 mm for the 11 degrees SMOT (P = .010). The 5 mm LCOT led to a lateral shift of 2.0 mm (P = .042) and the 10 mm LCOT to a shift of 3.0 mm (P = .006). Comparing the different osteotomies among themselves no significant differences were recorded. No significant anteroposterior COF shift was seen. A significant peak pressure reduction was recorded for each osteotomy: The SMOT led to a reduction of 29% (P = .033) for the 6 degrees and 47% (P = .003) for the 11 degrees osteotomy, and the LCOT to a reduction of 41% (P = .003) for the 5 mm and 49% (P = .002) for the 10 mm osteotomy. Similar to the COF lateralization no significant differences between the osteotomies were seen. CONCLUSION: LCOT and SMOT significantly reduced anteromedial ankle joint contact stresses in this cavovarus model. The unloading effects of both osteotomies were equivalent. More correction did not lead to significantly more lateralization of the COF or more reduction of peak pressure but a trend was seen. CLINICAL RELEVANCE: In patients with fixed cavovarus feet, both SMOT and LCOT provided equally good redistribution of elevated ankle joint contact forces. Increasing the amount of displacement did not seem to equally improve the joint pressures. The site of osteotomy could therefore be chosen on the basis of surgeon's preference, simplicity, or local factors in case of more complex reconstructions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital analysis of the occlusal contacts can be performed with the T-scan device (T Scan III, TekScan, Boston, USA). However, the thickness of the interocclusal T-scan sheet (100 μm) may lead to a displacement of the mandible. Thus, the aim of this study was to investigate the impact of the T-scan sheet on the position of the mandibular condyles in maximum intercuspidation. Twenty dentate subjects with healthy jaw function were enrolled in the study. An ultrasonic axiography device was used to measure the position of the condyles. Ten 3D condyle positions in maximum intercuspidation of the teeth were recorded: first the reference position without the sheet, then 3 times without the sheet, 3 times with the sheet, and finally again 3 times without the sheet. There was a statistically significant difference (Wilcoxon matched pairs test) between the condyle positions with and without the interocclusally positioned T-scan sheet (P < 0.0005). The T-scan device lead to a displacement of the condyles of about 1 mm mainly in ventral direction (P = 0.005). Thus, occlusal analysis is not performed in physiological, maximum intercuspidation. This has to be considered when interpreting the measured contact points.