999 resultados para Tectono-stratigraphy evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Jacadigo Group contains one of the largest sedimentary iron and associated manganese deposits of the Neoproterozoic. Despite its great relevance, no detailed sedimentological study concerning the unit has been carried out to date. Here we present detailed sedimentological data and interpretation on depositional systems, system tracts, external controls on basin evolution, basin configuration and regional tectonic setting of the Jacadigo Basin. Six depositional systems were recognized: (I) an alluvial fan system; (II) a siliciclastic lacustrine system; (III) a fan-delta system; (IV) a bedload-dominated river system; (V) an iron formation-dominated lacustrine or marine gulf system; and (VI) a rimmed carbonate platform system. The interpreted depositional systems are related to three tectonic system tracts. The first four depositional systems are mainly made of continental siliciclastics and refer to the rift initiation to early rift climax stage; the lake/gulf system corresponds to the mid to late rift climax stage and the carbonate platform represents the immediate to late post rift stage (Bocaina Formation deposits of the Ediacaran fossil-bearing Corumba Group). The spatial distribution of the depositional systems and associated paleocurrent patterns indicate a WNW-ESE orientation of the master fault zone related to the formation of the Jacadigo Basin. Thus, the iron formations of the Jacadigo Group were deposited in a starved waterbody related to maximum fault displacement and accommodation rates in a restricted continental rift basin. The Fe-Si-Mn source was probably related to hydrothermal plume activity that reached the basin through the fault system during maximum fault displacement phases. Our results also suggest a restricted tectono-sedimentary setting for the type section of the Puga Formation. The Jacadigo Group and the Puga Formation, usually interpreted as glacial deposits, are readdressed here as basin margin gravitational deposits with no necessary relation to glacial processes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complex depositional history, related to Atlantic rifting, demonstrates the geological evolution during the late Jurassic and early Neocomian periods in the Araripe Basin NE Brazil. Based on outcrop, seismic and remote sensing data, a new model of the tectono-stratigraphic evolution of the section that covers the stages Dom João, Rio da Serra and Aratu (Brejo Santo, Missão Velha and Abaiara formations) is presented in this paper. In the stratigraphic section studied, ten sedimentary facies genetically linked to nine architectural elements were described, representing depositional systems associated with fluvial, aeolian and deltaic environments. Based on the relationship between the rates of creation of accommodation space and sediment influx (A / S) it was possible to associate these depositional systems with High and Low accommodation system tracks. These system tracks represent two tectono-sequences, separated by regional unconformities. The Tectono-sequence I, which includes lithotypes from the Brejo Santo Formation and is related to the pre-rift stage, is bounded at the base by the Paleozoic unconformity. This unit represents only a High Accommodation System Track, composed by a succession of pelitic levels interbedded with sandstones and limestones, from a large fluvial floodplain origin, developed under arid climatic conditions. The Tectono-sequence II, separated from the underlying unit by an erosional unconformity, is related to the rift stage, and is composed by the Missão Velha and Abaiara Formation lithotypes. Changes in depositional style that reflect variations in the A / S ratio, and the presence of hydroplastic deformation bands, make it possible to divide this tectonosequence into two internal sequences. Sequence IIA, which includes the lower portion of the Missão Velha Formation and sequence IIB, is composed by the upper section of the Missão Velha and Abaiara Formations The Sequence IIA below, composed only by the Low Accommodation System Track, includes crossbedding sandstones interbedded with massive mudstones, which are interpreted as deposits of sandy gravel beds wandering rivers. Sequence IIB, above, is more complex, showing a basal Low Accommodation System Track and a High Accommodation System Track at the top, separated by an expansion surface. The lower System Track, related to the upper portion of the Missão Velha Formation, is composed by a series of amalgamated channels, separated by erosion surfaces, interpreted as deposits of a belt of braided channels. The High Accommodation System Track, correlated with the Abaiara Unit, is marked by a significant increase in the A / S, resulting in the progradation of a system of braided river deltas with aeolic influence. Regarding tectonic evolution, the stratigraphic study indicates that the Tectonosequence Rift in the Araripe basin was developed in two phases: first characterized by a beginning of rifting, related to Sequence IIA, followed by a phase of syndepositional deformation, represented by sequence IIB. The first phase was not influenced by the development of large faults, but was influenced by a sharp and continuous decrease of accommodation space that permitted a change in depositional patterns, establishing a new depositional architecture. In turn, the stage of syndepositional deformation allowed for the generation of enough accommodation space for the preservation of fluvial-lacustrine deposits and conditioned the progradation of a braided river-dominated delta system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of the Numidian Formation (latest Oligocene to middle Miocene), characterized by ultra-mature quartzose arenites with abundant well-rounded frosted quartz grains, remains controversial. This formation, sedimented in the external domain of the Maghrebian Flysch Basin, displays three characteristic stratigraphic members with marked longitudinal (proximal–distal) and transverse (along-chain) variations with palaeogeographical importance. The origin of the Numidian supply is related to the outward tectogenetic propagation when a forebulge evolved in the African foreland, leading to the erosion of African cratonic areas rich in quartzose arenites (Nubian Sandstone-like). The ages of the Numidian Formation checked by Betic, Maghrebian and Southern Apennine data suggest a timing for the accretionary orogenic wedge, earlier in the Betic-Rifian Arc (after middle Burdigalian), later in the Algerian-Tunisian Tell (after late Burdigalian) and afterwards in Sicily and the Southern Apennines (after Langhian). A geodynamic evolutionary model for the central-western Mediterranean is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several publications have contributed to improve the stratigraphy of the Paraíba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono-sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraíba Basin. Except for a few outcrops of carbonatic rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraíba Basin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The polyphase evolution of the Serido Belt (NE-Brazil) includes D, crust formation at 2.3-2.1 Ga, D-2 thrust tectonics at 1.9 Ga and crustal reworking by D-3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D-2 and D-3 events were used to constrain the tectono-thermal evolution of the belt. D-2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600-650 degreesC) through grain boundary migration, subgrain rotation and operation of quartz Q-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from (c)-prism to positive and negative (a)-rhombs. During D-3, enhancement of ductility by dissipation of heat that came from syn-D-3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D-3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from (a)-prism to a basal slip indicates a thermal path from 600 to 350 degreesC. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Serido Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Aljezur "graben" is a crucial piece in understanding the Caenozoic evolution of the SW atlantic portuguese edge. Detailed study of the sedimentary filling and bordering accidents allows the identification of several evolution steps since the Miocene. The graben is bordered by accidents that dislocate geomorphologic surfaces (Littoral Platform to the W, Interior Platform to the E), and also Neogene sedimentary units. The sedimentary filling is composed by conglomerates and sands grading into clays and bioclastic limestones (Burdigalian to Serravalian), upon which lie unconformably fine reddish sands, sometimes with abundant micas. Genetic and geometric relationships between these sands, those in higher surfaces outside the "graben" and the main bordering faults, are discussed. As a conclusion, the reconstruction of the tectono-sedimentary evolution is attempted, integrating it in a "pull-apart" context associated with the Messejana-fault system and it's reactivation by the differently orientated alpine compressions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the NW Himalaya of India, high-grade metamorphic rocks of the High Himalayan Crystalline Zone (HHCZ) are exposed as a 50 km large dome along the Miyar and Gianbul valleys. This Gianbul dome is cored by migmatitic paragneiss formed at peak conditions around 750 degreesC and 8 kbar, and symmetrically surrounded by sillimanite, kyanite +/- staurolite, garnet, biotite, and chlorite Barrovian mineral zones. Thermobarometric and structural investigations reveal that the Gianbul dome results from a polyphase tectono-metamorphic evolution. The first phase corresponds to the NE-directed thrusting of the Shikar Beh nappe, that is responsible for the Barrovian prograde metamorphic field gradient in the southern limb of the dome. In the northern limb of the dome, the Barrovian prograde metamorphism is the consequence of a second tectonic phase, associated with the SW-directed thrusting of the Nyimaling-Tsarap nappe. Following these crustal thickening events, exhumation and doming of the HHCZ high-grade rocks were controlled by extension along the north-dipping Zanskar Shear Zone, in the frontal part of the Nyimaling-Tsarap nappe, as well as by coeval to late extension along the south-dipping Khanjar Shear Zone, in the southern limb of the Gianbul dome. Rapid syn-convergence extension along both of these detachments induced a nearly isothermal decompression, resulting in a high-temperature/low-pressure metamorphic overprint, as well as enhanced partial melting. Such a rapid exhumation within a compressional orogenic context appears unlikely to be controlled solely by granitic diapirism. Alternatively, large-scale doming in the Himalaya could reflect a sub-vertical ductile extrusion of partially melted rocks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study reviews and synthesizes the present knowledge on the Sesia–Dent Blanche nappes, the highest tectonic elements in the Western Alps (Switzerland and Italy), which comprise pieces of pre-Alpine basement and Mesozoic cover. All of the available data are integrated in a crustal-scale kinematic model with the aim to reconstruct the Alpine tectono-metamorphic evolution of the Sesia–Dent Blanche nappes. Although major uncertainties remain in the pre-Alpine geometry, the basement and cover sequences of the Sesia–Dent Blanche nappes are seen as part of a thinned continental crust derived from the Adriatic margin. The earliest stages of the Alpine evolution are interpreted as recording late Cretaceous subduction of the Adria-derived Sesia–Dent Blanche nappes below the South-Alpine domain. During this subduction, several sheets of crustal material were stacked and separated by shear zones that rework remnants of their Mesozoic cover. The recently described Roisan-Cignana Shear Zone of the Dent Blanche Tectonic System represents such a shear zone, indicating that the Sesia–Dent Blanche nappes represent a stack of several individual nappes. During the subsequent subduction of the Piemonte–Liguria Ocean large-scale folding of the nappe stack (including the Roisan-Cignana Shear Zone) took place under greenschist facies conditions, which indicates partial exhumation of the Dent Blanche Tectonic System. The entrance of the Briançonnais micro-continent within the subduction zone led to a drastic change in the deformation pattern of the Alpine belt, with rapid exhumation of the eclogite-facies ophiolite bearing units and thrust propagation towards the foreland. Slab breakoff probably was responsible for allowing partial melting in the mantle and Oligocene intrusions into the most internal parts of the Sesia–Dent Blanche nappes. Finally, indentation of the Adriatic plate into the orogenic wedge resulted in the formation of the Vanzone back-fold, which marks the end of the pervasive ductile deformation within the Sesia–Dent Blanche nappes during the earliest Miocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High Precision U-Pb zircon and monazite dating in the Aiguilles Rouges-Mont Blanc area allowed discrimination of three short-lived bimodal magmatic pulses: the early 332 Ma Mg-K Pormenaz monzonite and associated 331 Ma peraluminous Montees Pelissier monzogranite; the 307 Ma cordierite-bearing peraluminous Vallorcine and Fully intrusions; and the 303 Fe-K Mont Blanc syenogranite. All intruded syntectonically along major-scale transcurrent faults at a time when the substratum was experiencing tectonic exhumation, active erosion recorded in detrital basins and isothermal decompression melting dated at 327-320 Ma. Mantle activity and magma mixing are evidenced in all plutons by coeval mafic enclaves, stocks and synplutonic dykes. Both crustal and mantle sources evolve through time, pointing to an increasingly warm continental crust and juvenile asthenospheric mantle sources. This overall tectono-magmatic evolution is interpreted in a scenario of post-collisional restoration to normal size of a thickened continental lithosphere. The latter re-equilibrates through delamination and/or erosion of its mantle root and tectonic exhumation/erosion in an overall extensional regime. Extension is related to either gravitational collapse or back-are extension of a distant subduction zone.