53 resultados para Tecoma stans
Resumo:
A new indole oxygenase from the leaves of Tecoma stans was isolated and purified to homogenity. The purified enzyme system catalyzes the conversion of indole to anthranilic acid. It is optimally active at pH 5.2 and 30°C. Two moles of oxygen are consumed and one mole of anthranilic acid is formed for every mole of indole oxidized. Dialysis resulted in complete loss of the activity. The inactive enzyme could be reactivated by the addition of concentrated dialysate. The enzyme is not inhibited by copperspecific chelators, non-heme iron chelators or atebrin. It is not a cuproflavoprotein, unlike the other indole oxygenases and oxidases.
Resumo:
Indole, tryptophan, tryptamine and skatole were isolated from the leaves of Tecoma stans. Anthranilic acid was also identified in its free form, in contrast to its glucoside, in Jasminum grandiflorum. The presence of both indole and anthranilic acid in the leaves of Tecoma stans indicates that they are the true substrate and product of indole oxygenase from the leaves of Tecoma stans.
Resumo:
A new indole oxygenase from the leaves of Tecoma stans was isolated and purified to near homogeneity. The purified enzyme system catalyses the conversion of indole to anthranilic acid. It is optimally active at pH 5.2 and at 30°C. Oxygen (2 mol) is consumed and anthranilic acid (1 mol) is formed for every mole of indole oxidized. Neither sulfhydryl reagents nor sulfhydryl compounds inhibited the enzyme activity. The oxygenase also attacks, apart from indole, 5-hydroxyindole, 5-bromoindole and 5-methylindole. It is not inhibited by copper specific chelators or non-heme iron specific chelators. Atebrin did not inhibit the enzyme activity suggesting that it is not a flavoprotein, unlike other indole oxygenases and indole oxidases. Dialysis resulted in complete loss of enzyme activity. The inactive enzyme could not be reactivated by addition of various cofactors.
Resumo:
2,3-Dihydroxybenzoate-2,3-oxygenase is mainly localized in the soluble and the chloroplast fractions of Tecoma leaves. It is associated with the lamellar structure of the chloroplast fraction. The chloroplast enzyme has properties similar to those of the soluble enzyme, but it has a longer half-life and is more stable to dialysis than the soluble enzyme. It is inhibited by sulfhydryl reagents and the inhibition is reversed by the addition of reduced glutathione. The chloroplast enzyme is insensitive to iron-chelating agents. The enzyme loses activity on dialysis against copper-chelating agents and the activity is completely recovered on the addition of copper; addition of iron does not restore the activity. Polyphenol oxidase is probably present only in the active form in the Tecoma chloroplast but it is not involved in the intradiol cleavage of 2,3-dihydroxybenzoic acid.
Resumo:
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.
Resumo:
Protocatechuate-3,4-dioxygenase from the leaves of Tecoma stans was purified to near homogeneity and some of its properties studied. It was optimally active at pH 5.2 and at 40°C. Its molecular weight of approx. 150 000 was determined by gel filtration on a Sephadex G-150 column. The Km value for protocatechuate was found to be 330 μM and for ferrous sulfate, 40 μM. The enzyme was highly specific for protocatechuate and did not attack any of the substrate analogues. None of the substrate analogues tested inhibited the enzyme activity. Sulfhydryl reagents inhibited the enzyme activity which could be partially reversed by sulfhydryl compounds. The dioxygenase activity was not associated with polyphenol oxidase activity.
Resumo:
Isophenoxazine, formed by the condensation of two molecules of o-aminophenol, is reduced by an enzyme system from Tecoma stans leaves to two molecules of catechol. The reaction proceeds well under anaerobic conditions; a 1–2 mole stoichiometry between the substrate disappeared and the product formed was maintained. The enzyme showed maximum activity at pH 5. The substrate at high concentrations caused a diminution in the activity and the optimum concentration of substrate was at 6 × 10−4 Image . The enzyme preparation was able to convert cinnabarinic acid and diphenylene dioxide 2,3-quinone into the corresponding catechol substances. The diphenylene dioxide 2,3-quinone at the same concentration was three times more susceptible to enzymic cleavage than isophenoxazine. Cinnabarinic acid inhibited the enzymic cleavage of isophenoxazine competitively. None of the known electron donors was found to activate the reaction. Inhibition studies suggested that intact sulfhydryl groups are necessary for enzyme activity. Heavy metal ions like Hg++, Ag+, Co++, Fe++, Ni++, and Fe3++ inhibited the reaction. Metal chelating agents did not have any effect on the enzyme.
Resumo:
The presence of an indole oxidase (indole: O2 oxidoreductase) was detected in the leaf extracts of Tecoma stans. The end product of the reaction was identified as anthranil. Formylaminobenzaldehyde, and o- aminobenzaldehyde were detected as intermediates in the overall conversion. Oxygen-uptake studies established that 3 atoms of oxygen were consumed in the formation of anthranil form I molecule of indole. The enzyme showed an absolute requirement for FAD and Cu2+ for maximum activity. FMN was ineffective as a cofactor. The enzyme had an optimum pH of 5.0. Inhibition studies with GSH and p-chloromericuribenzoate showed that a sulfhydrylcupric-ion complex at the active centre is highly essential.
Resumo:
An enzyme system which converts anthranilic acid to catechol was detected in the leaves of Tecoma stans, and its properties studied. The system is present exclusively in the chloroplast fraction of the leaves. The optimum pH of the reaction is 5·2 and maximum activity was obtained with citrate-phosphate buffer. There was good stoichiometry between the amounts of anthranilic acid disappeared and the amounts of catechol and ammonia formed. The enzyme system showed an absolute requirement for oxygen and evidence was obtained for the probable participation of NADPH and FAD in the hydroxylation step. The optimum concentration of anthranilic acid was 10−4 M; at higher concentrations the reaction was inhibited to a considerable extent. Cyanide, pyrophosphate, and EDTA also caused inhibition indicating a requirement for metal ions.
Resumo:
p.45-51
Resumo:
Tesis (Doctorado en Ciencias Biológicas con Acentuación en Química de productos Naturales) UANL, 2009.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)