984 resultados para Technical advances


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In this review, we attempt to address many of the issues that are related to ensuring patient benefit in body CT, balancing the use of ionizing radiation and iodinated contrast media. We attempt to not only summarize the literature but also make recommendations relevant to CT protocols, including the technical parameters of both the scanner and the associated contrast media. CONCLUSION: Although CT is a powerful tool that has transformed the practice of medicine, the benefits are accompanied by important risks. Radiologists must understand these risks and the strategies available to minimize them as well as the risks associated with contrast medium delivery in abdominal CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Several technical advances in thoracic aortic surgery, such as the use of antegrade cerebral perfusion, avoidance of cross-clamping and the application of glue, have beneficially influenced postoperative outcome. The aim of the present study was to analyse the impact of these developments on outcome of patients undergoing surgery of the thoracic aorta. METHODS AND RESULTS: Between January 1996 and December 2005, 835 patients (37.6%) out of 2215 aortic patients underwent surgery on the thoracic ascending aorta or the aortic arch at our institution. All in-hospital data were assessed. Two hundred and forty-one patients (28.8%) suffered from acute type A dissection (AADA). Overall aortic caseload increased from 41 patients in 1996 to 141 in 2005 (+339%). The increase was more pronounced for thoracic aortic aneurysms (TAA) (+367.9%), than for acute type A aortic dissections (+276.9%). Especially in TAA, combined procedures increased and the amount of patients with impaired left ventricular function (EF <50%) raised up from 14% in 1996 to 24% in 2005. Average age remained stable. Logistic regression curve revealed a significant decrease in mortality (AADA) and in the overall incidence of neurological deficits. CONCLUSIONS: Technical advances in the field of thoracic aortic surgery lead to a decrease of mortality and morbidity, especially in the incidence of adverse neurological events, in a large collective of patients. Long-term outcome and quality of life are better, since antegrade cerebral perfusion has been introduced.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The water and sewerage industry of England and Wales was privatized in 1989 and subjected to a new regime of environmental, water quality and RPI+K price cap regulation. This paper estimates a quality-adjusted input distance function, with stochastic frontier techniques in order to estimate productivity growth rates for the period 1985-2000. Productivity is decomposed so as to account for the impact of technical change, efficiency change, and scale change. Compared with earlier studies by Saal and Parker [(2000) Managerial Decision Econ 21(6):253-268, (2001) J Regul Econ 20(1): 61-90], these estimates allow a more careful consideration of how and whether privatization and the new regulatory regime affected productivity growth in the industry. Strikingly, they suggest that while technical change improved after privatization, productivity growth did not improve, and this was attributable to efficiency losses as firms appear to have struggled to keep up with technical advances after privatization. Moreover, the results also suggest that the excessive scale of the WaSCs contributed negatively to productivity growth. © 2007 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent technical advances have enabled for the first time, reliable in vitro culture of prostate cancer samples as prostate cancer organoids. This breakthrough provides the significant possibility of high throughput drug screening covering the spectrum of prostate cancer phenotypes seen clinically. These advances will enable precision medicine to become a reality, allowing patient samples to be screened for effective therapeutics ex vivo, with tailoring of treatments specific to that individual. This will hopefully lead to enhanced clinical outcomes, avoid morbidity due to ineffective therapies and improve the quality of life in men with advanced prostate cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wild-harvest fisheries for live reef fish are largely over-exploited or unsustainable because of over-fishing and the widespread use of destructive fishing practices such as blast and cyanide fishing. Sustainable aquaculture – such as that of groupers – is one option for meeting the strong demand for reef fish, as well as potentially maintaining or improving the livelihoods of coastal communities. This report from a short study by the STREAM Initiative draws on secondary literature, media sources and four diverse case studies from at-risk reef fisheries, to frame a strategy for encouraging sustainable aquaculture as an alternative to destructive fishing practices. It was undertaken as a component of the APEC-funded project Collaborative Grouper Research and Development Network (FWG/01/2001) to better understand how recent technical advances in grouper culture and other complementary work – including that of the Asia-Pacific Marine Finfish Aquaculture Network (APMFAN) hosted by NACA – could better support the livelihoods of poor coastal communities. (PDF contains 49 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mathematical model to optimize the German fishing fleet is draftet and it’s data basis is described. The model has been developed by Brodersen, Campbell and Hanf in 1994 to 1998. It could be shown, that this model is flexible enough to be applied successfully to a lot of very different political questions, if adapted accordingly. The economic consequences of measures of fishery politics, the effects of technical advances, but also increasing incertainties can, to some degree, appropriately be assessed quantitatively. Finally it could be shown that, principally, the available account of data is a good basis for investigations into fishery economics and fishery politics. However there is a need to treat the source of data continuously and competently in order to make these informations available quickly. Statistical data to reflect the fishery sector are valuable. However, they obtain their full value only when judged by experts from the fishing industry, biology and technical fishery research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ. Using this catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation. Future Bolocam analysis efforts are set on resolving these discrepancies by approximating cluster mass jointly with different observational probes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stable isotope geochemistry is a valuable toolkit for addressing a broad range of problems in the geosciences. Recent technical advances provide information that was previously unattainable or provide unprecedented precision and accuracy. Two such techniques are site-specific stable isotope mass spectrometry and clumped isotope thermometry. In this thesis, I use site-specific isotope and clumped isotope data to explore natural gas development and carbonate reaction kinetics. In the first chapter, I develop an equilibrium thermodynamics model to calculate equilibrium constants for isotope exchange reactions in small organic molecules. This equilibrium data provides a framework for interpreting the more complex data in the later chapters. In the second chapter, I demonstrate a method for measuring site-specific carbon isotopes in propane using high-resolution gas source mass spectrometry. This method relies on the characteristic fragments created during electron ionization, in which I measure the relative isotopic enrichment of separate parts of the molecule. My technique will be applied to a range of organic compounds in the future. For the third chapter, I use this technique to explore diffusion, mixing, and other natural processes in natural gas basins. As time progresses and the mixture matures, different components like kerogen and oil contribute to the propane in a natural gas sample. Each component imparts a distinct fingerprint on the site-specific isotope distribution within propane that I can observe to understand the source composition and maturation of the basin. Finally, in Chapter Four, I study the reaction kinetics of clumped isotopes in aragonite. Despite its frequent use as a clumped isotope thermometer, the aragonite blocking temperature is not known. Using laboratory heating experiments, I determine that the aragonite clumped isotope thermometer has a blocking temperature of 50-100°C. I compare this result to natural samples from the San Juan Islands that exhibit a maximum clumped isotope temperature that matches this blocking temperature. This thesis presents a framework for measuring site-specific carbon isotopes in organic molecules and new constraints on aragonite reaction kinetics. This study represents the foundation of a future generation of geochemical tools for the study of complex geologic systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systems-level studies of biological systems rely on observations taken at a resolution lower than the essential unit of biology, the cell. Recent technical advances in DNA sequencing have enabled measurements of the transcriptomes in single cells excised from their environment, but it remains a daunting technical problem to reconstruct in situ gene expression patterns from sequencing data. In this thesis I develop methods for the routine, quantitative in situ measurement of gene expression using fluorescence microscopy.

The number of molecular species that can be measured simultaneously by fluorescence microscopy is limited by the pallet of spectrally distinct fluorophores. Thus, fluorescence microscopy is traditionally limited to the simultaneous measurement of only five labeled biomolecules at a time. The two methods described in this thesis, super-resolution barcoding and temporal barcoding, represent strategies for overcoming this limitation to monitor expression of many genes in a single cell. Super-resolution barcoding employs optical super-resolution microscopy (SRM) and combinatorial labeling via-smFISH (single molecule fluorescence in situ hybridization) to uniquely label individual mRNA species with distinct barcodes resolvable at nanometer resolution. This method dramatically increases the optical space in a cell, allowing a large numbers of barcodes to be visualized simultaneously. As a proof of principle this technology was used to study the S. cerevisiae calcium stress response. The second method, sequential barcoding, reads out a temporal barcode through multiple rounds of oligonucleotide hybridization to the same mRNA. The multiplexing capacity of sequential barcoding increases exponentially with the number of rounds of hybridization, allowing over a hundred genes to be profiled in only a few rounds of hybridization.

The utility of sequential barcoding was further demonstrated by adapting this method to study gene expression in mammalian tissues. Mammalian tissues suffer both from a large amount of auto-fluorescence and light scattering, making detection of smFISH probes on mRNA difficult. An amplified single molecule detection technology, smHCR (single molecule hairpin chain reaction), was developed to allow for the quantification of mRNA in tissue. This technology is demonstrated in combination with light sheet microscopy and background reducing tissue clearing technology, enabling whole-organ sequential barcoding to monitor in situ gene expression directly in intact mammalian tissue.

The methods presented in this thesis, specifically sequential barcoding and smHCR, enable multiplexed transcriptional observations in any tissue of interest. These technologies will serve as a general platform for future transcriptomic studies of complex tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vibrational Raman spectroscopy is now widely recognized as a useful technique for chemical analysis. It has become increasingly popular for the characterization of stable species since the technology which underpins Raman measurements has matured. Time-resolved Raman spectroscopy has also become established as an excellent method for the characterization of transient chemical species but it is not so widely applied. However, the technical advances which have reduced the cost and increased the reliability of conventional: Raman systems can also be exploited in studies of transient species. In some cases it is just as straightforward to record the Raman-spectra of a short-lived transient species as it is to monitor a more stable sample. This raises the possibility of routinely adding time-domain Raman measurements to more conventional Raman techniques, increasing the selectivity of the analysis while retaining its ability to provide spectral information which is characteristic of the species under investigation.